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Preface

Around 90% of naturally occurring molecules have heterocycles as their core
structure, and heterocyclics have broad applications in pharmaceuticals,
agrochemicals, dyes, and many others. With this background, syntheses of
heterocyclic compounds have become one of the largest branches in modern
organic chemistry. After decades developing experience, numerous synthetic
methodologies have been successfully introduced. Nowadays, with the
advent of sustainable development, the application of cheap metal salts as
catalysts in heterocyclic synthesis has become important and attractive.
Among the family of cheap metals, zinc, iron, copper, cobalt, manganese,
and nickel are representative examples, as they are inexpensive, have low
toxicity, are biocompatible, and are environmentally benign.

This book outlines the main contributions in this are. The contents are
organized according to the catalyst applied and then subdivided by the size
of the ring formed. The text starts with a short introduction, followed by
chapters on the use of salts of the above metals in the synthesis of hetero-
cyclic compounds.

The book took around 10 months to complete, and every attempt was
made to ensure that the literature cited is as up-to-date as possible and that
out descriptions are accurate. However, it is always possible that some
literature might have been missed and there may be errors, for which we
apologize. We sincerely hope that overall the content of this book will be
useful to all those working in the field of heterocyclic synthesis.

Xiao-Feng Wu
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CHAPTER 1
Introduction

Around 90% of naturally occurring molecules have heterocycles as their core
structure, and heterocyclics have broad applications in pharmaceuticals,
agrochemicals, dyes, and many other areas. With this background, syntheses
of heterocyclic compounds have become one of the largest branches of
modern organic chemistry.' After decades developing experience, numerous
synthetic methodologies have been successfully introduced. Among these
procedures, methods involving transition metal catalysts constitute a large
percentage.

In recent years, sustainable development has been accepted by the wider
social community. With the combination of transition metal catalysts and the
concept of sustainable development, the use of cheap metal salts as catalysts
has attracted the interest of synthetic chemists. Although the catalytic
abilities of noble metals in coupling reactions are impressive, as demon-
strated by the award of the 2010 Nobel Prize in Chemistry jointly to Richard
F. Heck, Ei-ichi Negishi and Akira Suzuki for palladium-catalyzed cross-
couplings in organic synthesis,” their high cost and toxicity are clear
disadvantages.

Of the available cheap metals, zinc (Zn), iron (Fe), copper (Cu), cobalt (Co),
manganese (Mn) and nickel (Ni) are representative examples: they are
inexpensive, have low toxicity, are biocompatible and are environmentally
benign.

Zinc is the 24th most abundant element in the Earth’s crust. It was
first discovered as a pure metal in 1746 by the German chemist Andreas
Sigismund Marggraf by heating a mixture of calamine and carbon in a closed
vessel without copper, and this process had become commercially practical
by 1752. As a material, the major application of zinc is in the corrosion-
resistant zinc plating of steel, with other applications in batteries and alloys.
Biologically, zinc is an essential mineral with great biological and public
health importance, and it is an essential component of thousands of
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2 Chapter 1

proteins in plants, although it is toxic in excess. Zinc deficiency may cause
many diseases in adults and also lead to growth retardation, delayed
sexual maturation, infection susceptibility and diarrhea in children.’
Chemically, zinc metal has the electron configuration [Ar]3d'%4s” and is a
strong reducing agent. Zinc tends to form bonds with a greater degree
of covalency and it forms much more stable complexes with N- and S-donors.
Complexes of zinc are mostly 4- or 6-coordinated, but 5-coordinated
complexes are also known. The applications of zinc in organic chemistry
are mainly used in the preparation of organozinc compounds for organic
synthesis, such as the applications of zinc reagents in the Reformatsky
reaction, Frankland-Duppa reaction, Negishi reaction, Fukuyama reaction
and so on." The application of zinc complexes as catalysts for organic
transformations has also been explored, but they are mainly limited by their
‘Lewis acid’ properties.® They are still undeveloped in the area of coupling
reactions.

Iron is the fourth most common element in the Earth’s crust, with a wide
range of oxidation states (—2 to +6). Based on this property, iron catalysts
have been widely applied in redox reactions.® Concerning cross-coupling
reactions, the catalytic abilities of iron catalysts have also been explored,
especially the iron-catalyzed cross-coupling of organohalides with Grignard
reagents, which have even been applied in the total synthesis of biologically
active molecules.” Iron is also abundant biologically. Iron-containing
proteins are found in all living organisms, ranging from the evolutionarily
primitive Archaea to humans. The color of blood is due to hemoglobin, an
iron-containing protein.

The catalytic activities of copper salts are more remarkable, even
comparable to those of noble metals such as palladium catalysts in cross-
coupling reactions.® Numerous catalytic systems have been developed for
C-0, C-N, C-S and C-C bond formation. Biologically, copper is an essential
trace element in plants and animals and copper proteins have diverse roles
in biological electron transport and oxygen transportation.

The word ‘cobalt’ is derived from the German kobalt, from kobold
meaning ‘goblin,’ a superstitious term used for the ore of cobalt by miners.
As an element, cobalt has the electron configuration as [Ar]4s®3d” and has
oxidation states 2 + and 3 +. Cobalt has many applications in a wide range
of areas. In materials, cobalt is primarily used as the metal in the
preparation of magnetic, wear-resistant and high-strength alloys. In biology,
cobalt is the active center of coenzymes called cobalamins, the most
common example of which is vitamin B,,. As such it is an essential trace
dietary mineral for all animals. Cobalt in inorganic form is also an active
nutrient for bacteria, algae and fungi. In chemistry, various cobalt com-
pounds are used in chemical reactions as oxidation catalysts. Cobalt acetate
is used for the conversion of xylene to terephthalic acid, the precursor to the
bulk polymer polyethylene terephthalate. Typical catalysts are the cobalt
carboxylates (known as cobalt soaps). They are also used in paints, varnishes
and inks as ‘drying agents’ through the oxidation of drying oils. The same
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carboxylates are used to improve the adhesion of steel to rubber in
steel-belted radial tires. Cobalt-based catalysts are also important in
reactions involving carbon monoxide.® Steam reforming, useful in hydrogen
production, uses cobalt oxide-based catalysts. Cobalt is a catalyst in
the Fischer-Tropsch process, used in the hydrogenation of carbon monoxide
to give liquid fuels. The hydroformylation of alkenes often relies on cobalt
octacarbonyl as the catalyst, although such processes have been partially
displaced by more efficient iridium- and rhodium-based catalysts, e.g,
in the Cativa process. The hydrodesulfurization of petroleum uses a
catalyst derived from cobalt and molybdenum. This process helps to
rid petroleum of sulfur impurities that interfere with the refining of
liquid fuels.

Manganese is a silvery gray metal that resembles iron. It is hard and very
brittle, difficult to fuse, but easy to oxidize. The most common oxidation
states of manganese are +2, +3, +4, +6 and +7, although oxidation states
from —3 to +7 are observed. In biology, manganese is an essential trace
nutrient in all known forms of life. The classes of enzymes that have
manganese cofactors are very broad. The reverse transcriptases of many
retroviruses (although not lentiviruses such as HIV) contain manganese.
There is about 12 mg of manganese present in the human body, which is
stored mainly in the bones; in the tissues, it is mostly concentrated in the
liver and kidneys. In the human brain, manganese is bound to manganese
metalloproteins, most notably glutamine synthetase in astrocytes.
Manganese is also important in photosynthetic oxygen evolution in chloro-
plasts in plants. In chemistry, manganese is mainly used as oxidant for
organic substrates.'® Recently, its catalytic properties have also been
explored.

Nickel was first isolated and classified as a chemical element in 1751 by
Axel Fredrik Cronstedt, and has two electron configurations, [Ar]4s*3d® and
[Ar]4s'3d’, with very close energies. From the application point of view,
nickel plays important roles in the biology of microorganisms and plants.
The plant enzyme urease (an enzyme that assists in the hydrolysis of urea)
contains nickel. The [NiFe] hydrogenases contain nickel in addition to
iron-sulfur clusters. Such [NiFe] hydrogenases characteristically oxidize H,.
In synthetic chemistry, nickel catalysts have been explored in carbonylation
reactions, coupling reactions and many other types of catalytic transfor-
mations. More recently, nickel-catalyzed C-O bond activation has made
important achievements and showed superior activity to palladium.'* In
C(sp’)-X transformations, nickel gave excellent activities with boronic acids
and organozinc reagents as coupling partner. Nickel catalysts have also been
studied in the area of heterocycle synthesis.

With this background, it is extremely interesting and important to develop
methodologies that involve Zn, Fe, Cu, Co, Mn and Ni as catalysts in the
heterocycle syntheses. In the following chapters, we present detailed
discussions on this topic. The chapters are subdivided according to the sizes
of the rings formed. The book concludes with a personal outlook.
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CHAPTER 2

Zinc-Catalyzed Heterocycle
Synthesis

Zinc is elementally essential in our daily lives, with a wide range of
applications in materials, and in addition the adult body contains about
2-3 g of elemental zinc. Zinc salts have also been used in plant fertilizers. In
organic synthesis, zinc salts are mainly used as Lewis acids. With the
accepted importance of heterocyclic compounds and the environmentally
benign properties of zinc salts, it is of interest to explore the applications of
zinc catalysts in heterocycle syntheses.'

2.1 Five-Membered Heterocycles

2.1.1 Zinc-Catalyzed Synthesis of Carbonates

The application of zinc catalysts in the polymerization of epoxides and CO,
has been known for many years,” and the alternative production of carbonates
from epoxides and CO, by changing the reaction conditions and using zinc
catalyst is also of interest. Carbonates are aprotic polar solvents (and nowadays
considered as ‘green’ solvents) and are used as intermediates for pharma-
ceuticals and fine chemicals.’ Various procedures have been developed, and
the systems are becoming more well-defined or heterogenized.

Based on previous reports on zinc-catalyzed cyclization and copolymeri-
zation of CO, and peroxides, Kim and colleagues carried out a detailed
mechanistic study.” A pyridinium alkoxy ion-bridged dimeric zinc complex
was isolated and characterized. Subsequently, they carried out a systematic
study. The reactions of CO, and epoxides to produce cyclic carbonates were
performed in the presence of a catalyst [L,ZnX,] (L = pyridine or substituted
pyridine; X =Cl, Br, I). The effects of pyridine and halide ligands on the
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