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Chaos in Dynamical Systems

In the new edition of this classic textbook Ed Ott has added much new
material and has significantly increased the number of homework pro-
blems. The most important change is the addition of a completely new
chapter on control and synchronization of chaos. Other changes include
new material on riddled basins of attraction, phase locking of globally
coupled oscillators, fractal aspects of fluid advection by Lagrangian
chaotic flows, magnetic dynamos and strange nonchaotic attractors.

Over the past few decades scientists, mathematicians and engineers
have come to understand that a large variety of systems exhibit compli-
cated evolution with time. This complicated behavior, known as chaos,
occurs so frequently that it has become important for workers in many
disciplines to have a good grasp of the fundamentals and basic tools of the
science of chaotic dynamics.

Topics in the book include: attractors; basins of attraction; one-
dimensional maps; fractals; Hausdorff dimensions; symbolic dynamics;
stable and unstable manifolds; Lyapunov exponents; metric and topologi-
cal entropy; chaotic transients; fractal basin boundaries; chaotic scattering; -
quasiperiodicity; Hamiltonian systems; KAM tori; period doub]ihg cas-
cades; the intermittency transition to chaos; crises; bifurcations to chaos in
scattering problems and in fractal basin boundaries; the characterization of
dynamics by unstable periodic orbits; control and synchronization of
chaos; and quantum chaos in time-dependent bounded systems, as well as
in temporarily kicked and scattering problems. Homework problems are
included throughout the book.

This new edition will be of interest to advanced undergraduates and
graduate students in science, engincering and mathematics taking courses
in chaotic dynamics, as well as to researchers in the subject.

EpwARD OTT is currently on the faculty of the University of Maryland
where he holds the title of Distinguished University Professor of Physics
-and of Electrical and Computer Engineering. Before coming to Maryland
in 1979, he was a Professor of Electrical Engineering at Cornell University
(1968-1979). Prof. Ott’s carly research was on plasma physics and
charged particle beams, including research on space plasmas, fusion
plasmas, intense ion beams and electromagnetic wave generation by
electron beams. Since the early 1980s, Prof. Ott’s main research interests
have been in nonlinear dynamics and its applications to problems in
science and engineering. Some of this work includes contributions in the
areas of bifurcations of chaotic sets, the fractal dimension of strange
attractors, the structure of basin boundaries, applications of chaotic
dynamics to problems in fluids and plasmas, and the control and synchro-
nization of chaos. Prof. Ott has also been active in the education of
students in nonlinear dynamics. He is an author of over 300 research
articles in scientific journals.
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Preface to the first edition

Although chaotic dynamics had been known to exist for a long time, its
importance for a broad variety of applications began to be widely
appreciated only within the last decade or so. Concurrently, there has been
enormous interest both within the mathematical community and among
engineers and scientists. The field continues to develop rapidly in many
directions, and its implications continue to grow. Naturally, such a
situation calls for textbooks to serve the need of providing courses to
students who will eventually utilize concepts of chaotic dynamics in their
future careers. A variety of chaos texts now exists. In my teaching of
several courses on chaos, however, I found that the existing texts were not
altogether suitable for the type of course I was giving, with respect to both
level and coverage of topics. Hence 1 was motivated to prepare and
~ circulate notes for my class, and these notes led to this book. The book is
intended for use in a graduate course for scientists and engineers. Accord-
ingly, any mathematical concepts that such readers may not be familiar
with (e.g., measure, Cantor sets, etc.) are introduced and informally
explained as needed. While the intended readers are not mathematicians,
there is a greater emphasis on basic mathematical concepts than in most
other books that address the same audience. The style is pedagogical, and
it is hoped that the very interesting, sometimes difficult, concepts that are
the backbone for studies of chaos are made clear. The coverage is broad,
including such topics as multifractals, quantum chaos, embedding, chaotic
scattering, etc. Thus the book can also serve as a reference for workers in
the field. There is too much in this book for a single one semester course.
Hence it is expected that a teacher would select parts in designing a
course; for example, one choice might be to base a one semester



Preface to the first edition

introductory course on Chapters 1-4, possibly supplemented by a few
sections from later chapters. The author has also taught more advanced
courses that utilized material now contained in Chapters 7, 9 and 10,*
supplemented by readings from current research papers.

I wish to thank my students and colleagues who read and commented
on various versions and parts of the manuscript. Special thanks in this
regard are owed to George Schmidt, Artur Lopes, Mingzhou Ding and
Reinhold Bliimel. I also wish to thank Denise Best and, especially, Patsy
Keehn for their expert typing of the manuscript. Finally, I thank my wife,
Mary, and my children, William and Susan, for their patience and support
while this book was being prepared.

January 1992 Edward Ott
College Park

* Chapter 10 of the first edition corresponds to Chapter 11 of this second edition.



Preface to the second edition

This second edition updates and expands the first edition. The most
important change is a new chapter on control and synchronization of chaos
(Chapter 10). Further additions have been made throughout the book,
including new material on riddled basins of attraction, phase locking of
globally coupled oscillators, fractal aspects of fluid advection by Lagran-
gian chaotic flows, magnetic dynamos and strange nonchaotic attractors.
Also, twenty-eight new homework problems for students have been added.

February 2002 Edward Ott
College Park
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Chapter 1
Introduction and overview

1.1 Some history

Chaotic dynamics may be said to have started with the work of the French
mathematician Henri Poincaré at about the turn of the century. Poincaré’s
motivation was partly provided by the problem of the orbits of three
celestial bodies experiencing mutual gravational attraction (e.g., a star
and two planets). By considering the behavior of orbits arising from sets
of initial points (rather than focusing on individual orbits), Poincaré was
able to show that very complicated (now called chaotic) orbits were
possible. Subsequent noteworthy early mathematical work on chaotic
dynamics includes that of G. Birkhoff in the 1920s, M. L. Cartwright and
J. E. Littiewood in the 1940s, S. Smale in the 1960s, and Soviet
mathematicians, notably A. N. Kolmogorov and his coworkers. In spite of
this work, however, the possibility of chaos in real physical systems was
not widely appreciated until relatively recently. The reasons for this were
first that the mathematical papers are difficult to read for workers in other
fields, and second that the theorems proven were often not strong enough
to convince researchers in these other fields that this type of behavior
would be important in their systems. The situation has now changed
drastically, and much of the credit for this can be ascribed to the extensive
numerical solution of dynamical systems on digital computers. Using
such solutions, the chaotic character of the time evolutions in situations of
practical importance has become dramatically clear. Furthermore, the
complexity of the dynamics cannot be blamed on unknown extraneous
experimental effects, as might be the case when dealing with an actual
physical system.



1 Introduction and overview

In this chapter, we shall provide some of the phenomenology of chaos
and will introduce some of the more basic concepts. The aim is to provide
a motivating overview! in preparation for the more detailed treatments to
be pursued in the rest of this book.

1.2 Examples of chaotic behavior

Most students of science or engineering have seen examples of dynamical
behavior which can be fully analyzed mathematically and in which the
system eventually (after some transient period) settles either into periodic
motion (a limit cycle) or into a steady state (i.e., a situation in which the
system ceases its motion). When one relies on being able to specify an
orbit analytically, these two cases will typically (and falsely) appear to be
the only important motions. The point is that chaotic orbits are also very
common but cannot be represented using standard analytical functions.
Chaotic motions are neither steady nor periodic. Indeed, they appear to be
very complex, and, when viewing such motions, adjectives like wild,
turbulent, and random come to mind. In spite of the complexity of these
motions, they commonly occur in systems which themselves are not
complex and are even surprisingly simple. (In addition to steady state,
periodic and chaotic motion, there is a fourth common type of motion,
namely quasiperiodic motion. We defer our discussion of quasiperiodicity
to Chapter 6.)

Before giving a definition of chaos we first present some examples and
background material. As a first example of chaotic motion, we consider an
experiment of Moon and Holmes (1979). The apparatus is shown in Figure
1.1. When the apparatus is at rest, the steel beam has two stable steady-
state equilibria: either the tip of the beam is deflected toward the left
magnet or toward the right magnet. In the experiment, the horizontal
position of the apparatus was oscillated sinusoidally with time. Under
certain conditions, when this was done, the tip of the steel beam was
observed to oscillate in a very irregular manner. As an indication of this
very irregular behavior, Figure 1.2(a) shows the output signal of a strain
gauge attached to the beam (Figure 1.1). Although the apparatus appears
to be very simple, one might attribute the observed complicated motion to
complexities in the physical situation, such as the excitation of higher
order vibrational modes in the beam, possible noise in the sinusoidal
shaking device, etc. To show that it is not necessary to invoke such effects,
Moon and Holmes considered a simple model for their experiment,
namely, the forced Duffing equation in the following form,

&y

d .
F—i—vﬁ-{—(y:‘ —y)=gsint. (1.1)



1.2 Examples of chaotic behavior 3

Figure 1.1 The apparatus of
Moon and Holmes (1979).

Strain
-~ gauge
y sin ¢

Steel

 «— beam

Magnets

Figure 1.2 () Signal from the
strain gauge. (b) Numerical
solution of Eq. (1.1) (Moon
and Holmes, 1979).

1)

In Eqg. (1.1), the first two terms represent the inertia of the beam and
dissipative effects, while the third term represents the effects of the
magnets and the elastic force. The sinusoidal term on the right-hand side
represents the shaking of the apparatus. In the absence of shaking (g = 0),
Eq. (1.1) possesses two stable steady states, y =1 and y = ~1, corre-
sponding to the two previously mentioned stable steady states of the beam.
(There is also an unstable steady state y = 0.) Figure 1.2(b) shows the
results of a digital computed numerical solution of Eq. (1.1) for a
particular choice of v and g. We observe that the results of the physical
experiment are qualitatively similar to those of the numerical solution.



Figure 1.3 Schematic
illustration of the experiment
of Shaw (1984).

1 Introduction and overview

Thus, it is unnecessary to invoke complicated physical processes to
explain the observed complicated motion.

As a second example, we consider the experiment of Shaw (1984)
illustrated schematically in Figure 1.3. In this experiment, a slow steady
inflow of water to a ‘faucet’ was maintained. Water drops fall from the
faucet, and the times at which successive drops pass a sensing device are
recorded. Thus, the data consists of the discrete set of times
t, ta, ..., tn, ... at which drops were observed by the sensor. From these
data, the time intervals between successive drops can be formed,
At, = tnyy — t,. When the inflow rate to the faucet is sufficiently small,
the time intervals Ar, are all equal. As the inflow rate is increased, the
time interval sequence becomes periodic with a short interval At,
followed by a longer interval At,, so that the sequence of time intervals is
of the form ..., At,, Aty, Aty, Aty, At,, .... We call this a period two
sequence since At, = At,.;. As the inflow rate is further increased,
periodic sequences of longer and longer periods were observed, until, at
sufficiently large inflow rate, the sequence At,, At;, Ats, ... apparently
has no regularity. This irregular sequence is argued to be due to chaotic
dynamics.

As a third example, we consider the problem of chaotic Rayleigh—
Benard convection, originally studied theoretically and computationally in
the seminal paper of Lorenz (1963) and experimentally by, for example,
Ahlers and Behringer (1978), Gollub and Benson (1980), Bergé er al.
(1980) and Libchaber and Maurer (1980). In Rayleigh—Benard convec-
tion, one considers a fluid contained between two rigid plates and
subjected to gravity, as shown in Figure 1.4. The bottom plate is
maintained at a higher temperature Ty + AT than the temperature T of
the top plate. As a result, the fluid near the warmer lower plate expands,
and buoyancy creates a tendency for this fluid to rise. Similarly, the cooler

ﬁ Dripping
faucet

AN

Light source

:JWO

Light sensor



1.2 Examples of chaotic behavior

more dense fluid near the top plate has a tendency to fall. While Lorenz’s
equations are too idealized a model to describe the experiments accurately,
in the case where the experiments were done with vertical bounding side-
walls situated at a spacing of two to three times the distance between the
horizontal walls, there was a degree of qualitative correspondence between
the model and the experiments. In particular, in this case, for some range
of values of the temperature difference AT, the experiments show that the
fluid will execute a steady convective cellular flow, as shown in the figure.
At a somewhat larger value of the temperature difference, the flow
becomes time-dependent, and this time dependence is chaotic. This
general behavior is also predicted by Lorenz’s paper. .

From these simple examples, it is clear that chaos should be expected
to be a very common basic dynamical state in a wide variety of systems.
Indeed, chaotic dynamics has by now been shown to be of potential
importance in many different fields including fluids,? plasmas,? solid state
devices,* circuits,” lasers,® mechanical devices,” biology,} chemistry,’
acoustics,'® celestial mechanics,!! etc.

In both the dripping faucet example and the Rayleigh—Benard convec-
tion example, our discussions indicated a situation as shown schematically
in Figure 1.5. Namely, there was a system parameter, labeled p in Figure
1.5, such that, at a value p = py, the motion is observed to be nonchaotic,
and at another value p = p,, the motion is chaotic. (For the faucet
example, p is the inflow rate, while for the example of Rayleigh—Benard
convection, p is the temperature difference AT.) The natural question
raised by Figure 1.5 is how does chaos come about as the parameter p is
varied continuously from py to p,? That is, how do the dynamical motions
of the system evolve with continuous variation of p from p; and p,? This
question of the routes to chaos'? will be considered in detail in Chapter 8,

A I I I I HTTITITTTTITITTTTITTRSSS 7o

Gravity
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P P2 System
} . s parameter
} ! ’
Nonchaotic Chaotic

behavior behavior

Figure 1.4 Rayleigh~Benard
convection.

Figure 1.5 Schematic
illustration of the question of
the transition to chaos with
variation of a system
parameter.



