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PREFACE

“Par ma foi, il y a plus de quarante ans
que je dis de la prose, sans que j'en
susse rien, et je vous suis le plus obligé
du monde de m’avoir appris cela.”

MoLIERE
“Le Bourgeois Gentilhomme”

This booklet describes a course for students of physics
and chemistry in their first term at a university provided
they have passed G.C.E. at advanced level in pure mathe-
matics, applied mathematics, physics and chemistry.

The idea of such a booklet was conceived at a discussion
meeting arranged by the Low-Temperature Group of the
Physical Society and described in Nature vol. 159, page
626. For eight years I have hoped that it might be written
by someone more experienced than 1 am in elementary
teaching, but I have now lost hope. If some students, after
digesting the text of this booklet, later on react to a formal
course of statistical thermodynamics somewhat as the
Bourgeois Gentilhomme reacted to his lesson on prose I
shall have succeeded in my object.

I am grateful to the publishers for doing everything
possible to keep down the price and I for my part have
aimed at the maximum brevity consistent with what I
hope is an acceptable degree of clarity.

E.A.G.
1955
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CHAPTER 1
ELEMENTS OF QUANTUM THEORY

Our present detailed knowledge of the structure of
atoms and molecules has been acquired entirely since the
turn of the century. Its acquisition has béen due to a
combination of new experimental techniques with a new
theory of mechanics called ““quantum theory”. Some
knowledge of quantum theory is essential for any detailed
description of the behaviour of atoms and molecules. This
chapter is devoted to a summary of the minimum amount
of quantum theory adequate for our purpose. No mention
will be made of the history of the development of quantum
theory nor of the experiments which led to its develop-
ment. The justification of the theory is, of course, that it
leads to conclusions in agreement with experiment.

As an introduction to quantum theory, we shall recapi-
tulate some of the elements of classical mechanics. We shall
then describe the most essential modifications introduced
by quantum theory. Classical mechanics is based on
Newton’s laws of motion. One of the consequences of
these laws is the existence of energy which may be of two
kinds, kinetic and potential. In an isolated system, e.g. a
swinging pendulum, the total energy remains constant. As
the potential energy decreases, the kinetic energy increases
and vice-versa so that the sum of the kinetic energy and
potential energy remains constant. For example the motion
of a harmonic oscillator is completely described by the
following equations, in which x denotes the positional
coordinate, @ the amplitude, v the frequency and # the
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time. Further, T denotes the kinetic energy, V the poten-
tial energy and E the total energy. The potential energy
V has its minimum value, conventionally taken as V = 0,
atx = 0.
% = a sin2nvt
x = 2nva cos2mvt
T = }mit = -}m (2mva)? cos?2myt
V = }m (2rnv)2 22 = }m (2nva)? sin®2nvt
E =T+ V = jm (2nva)?

Thus the total energy E is proportional to the square of
the amplitude 4.

Whereas the total energy of an isolated mechanical
system such as a harmonic oscillator remains constant, its
energy can be changed by interaction with its surroundings.
When the system gains energy, then the sarhe amount of
energy is lost by the surroundings and we say that work
is done on the system by the surroundings. Conversely
when the system loses energy then the same amount of
energy is gained by the surroundings and we say that
work is done by the system on the surroundings.

It is an essential feature of classical mechanics that the
possible values of E form a continuum and that E changes
continuously. It is an essential feature of quantum theory
that E can have only certain discrete values and that E
can change only from one of these discrete values to
another. It is evident from this that there is in principle
a complete contradiction between classical mechanics and
quantum theory, but in fact the gaps between successive
values of E are so small as to be entirely negligible for
planets, projectiles and even the smallest grains of dust.
They are however not always negligible for molecules and
atoms and they are never negligible for electrons. Hence
classical mechanics is an approxu'natlon to quantum
theory valid for planets, projectiles and grains of dust but
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sometimes inadequate for molecules and atoms and com-
pletely misleading for electrons.

The restriction of the energy E to discrete values is
called “quantization”. Quantum theory is largely con-
cerned with the derivation from a few general principles
of the rules of quantization. We shall not here be concern-
ed with these derivations, but shall confine ourselves to
quoting the derived rules for a few of the simplest and
most important kinds of system.

The quantization rules involve a universal constant
called ““Planck’s constant”. This constant, denoted by 4,
has the dimensions of the product of linear momentum by
distance i.e. the same dimensions as angular momentum.
The value of 4 is 6.6256 X 10~*" g cm? s~ or 6.625 X 10—
kg m?s~1. We shall now quote and discuss several quanti-
zation rules in turn.

(a) As our first and simplest example we consider a
particle of mass m moving freely back and forth between
and normal to two parallel walls distant L apart. The
quantization rule is expressed most simply in terms of
the momentum p = mx, where x denotes distance from
one of the walls and x = dx/d? denotes velocity. The quan-
tization rule for this system is

|| 2L = nh

where |p| denotes the constant magnitude of the momen-
tum and # is an integer called the “quantum number”.
The momentum itself is + |p| or — |p| according to the
direction of motion of the particle. The factor 2 occurs
because the length of path of the particle over a complete
cycle ““there and back” is 2L. We may thus express the
quantization rule in the words “The product of the magni-
tude of the momentum by the length of path over a cycle
is equal to an integral multiple of Planck’s constant.” The
allowed values of the energy E, in this case purely kinetic,
are immediately derived from the allowed values of |p|.
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., PP A
E=§mx3=§;=n’m
We may now verify that the gaps between successive
energy or momentum values of the particle moving freely
between two walls are usually negligible. Let us consider
the molecules or atoms of helium gas at room temperature.
The magnitude of their average kinetic energy of motion
in a given direction is about 2 X 107*g cm? s~%, The mass
of a helium atom is about 7 x 10~%¢ g. If then the two
walls are 1 mm apart the values of E allowed by the
quantization rule are

n? X 6.6 X 10-2" x 6.6 x 10-%
8 X 7 x 10-2¢ x 0.1 x 0.1
=n? X 7 X 10-® gcm?s-2

gcmis-?

Thus the average value of n* is about

2 X 1014
oo =3 x 1o
and the average value of n is about 1.7 X 107. Hence
when 7 changes to #» 4+ 1 the energy increases by a frac-
tion 2/n ~ 1 x 1077, This is so small that we may in this
example ]ustlﬁably ignore the discontinuity in the energy
values i.e. ignore quantization. If we had chosen a heavier
particle than a helium atom or a larger distance between
the walls the effect of quantization would have been still
more negligible. At lower temperatures the average energy
of a molecule is less but even at a temperature as low as
10°K quantization of the translational motion of molecules
is unimportant. We could easily verify that the effect of
quantization is quite trivial for the motion of the lightest
visible particles and a fortiori for projectiles and planets.
(b) As our second example we take the harmonic oscil-
lator. Since the magnitude of the momentum is not con-
stant the quantization rule cannot be as simple as for the
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free particle. By a natural extension of the previous ex-
ample we might guess that

[pdx = vh

where the integration is over a complete cycle “there and
back” and v is an integer. We can transform the left side
of this equation as follows

. 2T

Jpax = [prdt = [2T dt =~
where T denotes the average value of T over a complete
period of duration 1/». But for a harmonic oscillator

-
where V denotes the average value of the potential
energy V measured from the equilibrium position as zero.

Consequently
2T=T+ V=E.

Our tentative relation may therefore be rewritten as
Eyv=vh or E = vhy.

We have arrived at this relation by “intelligent guessing”’
and we have no proof that it is right. According to quan-
tum theory the above formula gives the correct spacing
of the energy levels, but the absolute values, when a state
of rest at the equilibrium position is taken as zero energy,
are
E = (1} + %) hv

where # is an integer. The lowest allowed value of the
energy lies $4» above that of the state of rest in the equili-
brium position.

(c) As our third example we shall consider a particle
free to move in a container. We require three coordinates
to describe the position of the particle. We might use car-
tesian coordinates or spherical polar coordinates, but
whatever our choice the required number of coordinates is
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three. We describe this situation by the statement that
the particle has three ““degrees of freedom”. According to
quantum theory each quantum state is specified by as
many quantum numbers as there are degrees of freedom.
Let us assume for the sake of simplicity that the container
is a rectangular box with edges a, b, c. It is then most
convenient to use cartesian coordinates, x, y, z with respect
to axes parallel to the edges of the box. With this particu-
lar choice of coordinates the problem, in quantum theory
as well as in classical theory, can be resolved into three
independent sets of relations for the motion in the three
directions defined by z, y, 2 respectively. In mathematical
terminology the motion of the particle is “separable”
when these coordinates are used. The quantization rules
are now

|Pel X 28 =m,h
Pyl X 2b =n,h
Ipll X 2¢ =nlh

where »,, n,, n, are three independent integral quantum
numbers. There are three of them because the particle has
three degrees of freedom, and each is of the form already
quoted for one-dimensional motion. The energy, being
purely kinetic, is given by

pi+ by + P _
ek R 27; 8m (a* + 3 + )
If the box is cubic with an edge of length L
a=b=c=1L

and the formula for the energy becomes
ha
=@ +nm+ ") n
All states n,, n,, n, such that #z + %} + #; has the same
value will have equal energy. For example all the following
states have energy E = 66 A*/8mL2.
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Ny ny n, Ny Ny 7,
8 1 1 4 1 7
1 8 1 7 1 4
1 1 8 4 7 1
7 4 1 1 4 7
1 7 4

In this case there are 9 distinct quantum states having
equal energy and we say that this energy level is “nine-
fold degenerate”.

As already mentioned it is sometimes, but by no means
always, allowable to ignore the discreteness of quantum
states and regard them as forming a continuum. This is
allowable when the separation between the energy levels
is negligibly small compared with the energy differences
or energy changes with which one is concerned. When
this condition is satisfied, we say that the system behaves
classically. When the condition is satisfied with respect
to a particular degree of freedom we say that this degree
of freedom behaves classically.

If a certain degree of freedom behaves classically, we
may and usually shall treat it classically, i.e. as if the
states formed a continuum. Even so it will sometimes be
necessary to know how many quantum states are included
in an element of the continuum. In the simplest case of a
single translational degree of freedom described by the
coordinate # and momentum p,= m«, the number of
quantum states included between x and x + dx and be-
tween p, and p, + dp, is dxdp,/k. If we draw a diagram
in which the abscissa represents x and the ordinate repre-
sents p,, such a diagram is called a “phase plane”. We
may then say that there is one quantum state per element
of area 4 in the phase plane.

We may extend this statement to three dimensions. If
we imagine x, y, 2, P, P,, P, as a six-dimensional coordinate
system this is called phase space for the particle. Then the



8 ELEMENTS OF QUANTUM THEORY

number of quantum states is one per element A* of six-
dimensional phase space.

The statement can be further extended to a system of
f degrees of freedom described by coordinates ¢,, g, ...g¢
and momenta $,, p,, ...fr. Then in the 2f-dimensional
phase space in which the ¢’s and $’s are plotted as coor-
dinates, there will be one quantum state per 2f-dimen-
sional element Af, provided of course all f degrees of free-
dom are classical. If they are not classical the statement is
still true on the average, but may not be true for an
arbitrarily chosen element of phase space.



CHAPTER 2
TEMPERATURE AND PARTITION FUNCTIONS

We shall not attempt to give here a logical definition
of temperature. We shall rather state its most important
properties.

When two macroscopic systems are placed in contact
with each other in such a manner that interchange of
energy is possible, then over and above any work that the
one system may do on the other, energy will always move
from the system at the higher temperature to the system
at the lower temperature and this exchange of energy is
called a flow of heat. In particular if the two systems have
equal temperatures, there will be no flow of heat and they
are then said to be in thermal equilibrium. Moreover when
heat flows into a system its temperature either increases or
remains constant and when heat flows out of a system its
temperature either decreases or remains constant. (The
case where it remains constant is related to the term
“latent heat”, but discussion of this is postponed.) Other
things being equal (in the interest of simplicity we are
deliberately using vague terminology at this stage) increase
of temperature involves increase of energy in the system
and vice-versa. Consequently, at least in a loose way,
temperature is a measure of the energy in a given
system.

Energy, like volume, is a typically “‘extensive pro-
perty”’ by which we mean that the energy (or volume) of
the whole system is equal to the sum of the energies (or
volumes) of the parts of the system. The temperature, like
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pressure, on the other hand is a typically “intensive pro-
perty’”’ by which we mean that in a homogeneous system
the temperature (or pressure) of any part is the same as
that of the whole. Whereas the energy of the whole system
is, as just mentioned, an extensive property, the average
energy per molecule in the system is an intensive pro-
perty. We might then reasonably expect the temperature
to be related to the average energy per molecule. We shall
see that the temperature in fact determines not only the
average energy per molecule, but moreover determines
the distribution of the molecules over all possible quantum
states.

There is an infinite choice of temperature scales such
that everything we have so far said about temperature is
valid. There is however one particular kind of temperature
scale in terms of which the distribution law over quantum
states takes an especially simple form. The temperature on
such a scale is called the “absolute temperature’ and it is
denoted by the symbol 7. The distribution law for mole-
cules over quantum states 1, 2, 3, ..., each specified by as
many quantum numbers as the molecule has degrees of
freedom, may then be expressed as follows. Let N,, N,,
N,, ..., denote the number of molecules in the states
1, 2, 3, ..., with energies E,, E,, E,, ..., then

N;:Ny:Ng:...= ¢ BET ; o—BfET , o—ERT .

where £k is a constant, called Boltzmann's constant,which
is a scaling factor fixing the size of the degree. When the
temperature of the triple point of water is defined as
273.16 degrees the scale is called the Kelvin scale and we
write for the triple point of water 77 = 273.16°K. On this
scale the value of Boltzmann'’s constant is

k = 1.38 x 10718 erg deg-1.

The above statement, known as Boltzmann'’s distribu-
tion law, describes by far the most important property of
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absolute temperature and it will be our starting point for
all problems involving.temperature. This statement tells
us nothing about how absolute temperature can be mea-
sured practically. That is a problem which must be post-
poned to a later chapter when we shall find it quite easy.

It is sometimes convenient to write Boltzmann'’s distri-
bution law in the alternative form

N, = Ae~ EilkT (all )

where 4 has the same value for every quantum state. (Note
that we do not call 1 a “constant’’ because that might
give the false impression that A were independent of tem-
perature.) The coefficient 4 is called the “‘activity”’, or the
“absolute activity”’.

It may happen that we are interested not so much in
the number of molecules in a single quantum state ¢ but
rather in the number in a certain group of quantum states.
In particular we may be interested in the distribution of
molecules over the different energy levels, some or all of
which may be degenerate. If then we denote by , the
degeneracy, i.e. the number of independent quantum
states, of the energy level E, and by N, the number of
molecules in this energy level at the temperature T we
have
N, N, N,

—E kT~ | —EdkT peo— BT =y

P ¥
or

N, = A pe BriiT
where the activity A2 has the same value for all energy
levels.

If we denote by f; the fraction of molecules in a particu-
lar quantum state ¢, specified by as many quantum num-
bers as the molecule has degrees of freedom, then we have

e—EflkT
fo= S o Bk
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where the summation in the denominator extends over all
quantum states. This sum plays an important role in
determining the equilibrium properties of molecules. It is
sometimes called the ‘‘sum of states”” (German ““Zustand-
summe’’) of the molecule but more usually in English
the “partition function” of the molecule. It is denoted by
the symbol Q. Thus

Q = zje—EﬂkT
where X; denotes summation over states, or by
Q = Er P e_Ef”‘T

where X, denotes summation over energy levels.

An important property of a partition function is that it
can be factorized whenever the energy is separable with
respect to several degrees of freedom. For example if each
energy E, can be expressed as a sum

E, = Ei{ + E& 4+ E

where the single dash, double dash and triple dash relate
to different degrees of freedom or groups of degrees of
freedom, each specified by its appropriate quantum num-
bers, then we have

Q — Ql QI/ QIII
where Q' = X, e FitT
Q" =2, e—EmlkT

QHI = E" e—E,. kT

We shall call call @, Q”, @' the partition functions for the
respective degrees of freedom or groups of degrees of free-
dom.



