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Preface

Synopsis

The goal of this monograph is to study the interplay between various algebraic,
geometric and combinatorial aspects of real hyperplane arrangements. The text
contains many new ideas and results. It also gathers and organizes material from
various sources in the literature, sometimes highlighting previously unnoticed con-
nections. We briefly outline the contents below. They are explained in more detail
in the main introduction.

We provide a detailed discussion on faces, flats, chambers, cones, gallery in-
tervals, lunes, the support map, the case and base maps, and other geometric
notions associated to real hyperplane arrangements. We show that any cone can
be optimally decomposed into lunes. We introduce the category of lunes. This
beautiful structure is intimately related to the substitution product of chambers a
generalization of the classical associative operad). The classical case is obtained by
specializing to the braid arrangement. We give several generalizations of the classi-
cal identity of Witt from Coxeter theory under the broad umbrella of descent and
lune identities. The topological invariant involved here is the Euler characteristic of
a relative pair of cell complexes. We generalize a well-known factorization theorem
of Varchenko to cones, and also initiate an abstract approach to distance functions
on chambers.

The main algebraic objects are the Birkhoff monoid and the Tits monoid, and
their linearized algebras. The former is commutative and its elements are the flats
of the arrangement, while the latter is not commutative and its elements are the
faces. A module whose elements are chambers also plays a central role. Both
monoids carry natural partial orders. The Birkhoff monoid is a lattice and its
product is the join operation in the lattice. One may think of the Tits monoid as
a noncommutative lattice. Its abelianization is the Birkhoff monoid, via the map
that sends a face to the flat which supports it. We introduce the Janus monoid
which is built out of the Tits and Birkhoff monoids.

We initiate a noncommutative Mobius theory of the Tits monoid and relate
it to the representation theory of its linerization which is the Tits algebra. The
central object is the lune-incidence algebra, which is a certain reduced incidence
algebra of the poset of faces. It contains noncommutative zeta functions charac-
terized by lune-additivity, and noncommutative M&bius functions characterized by
the noncommutative Weisner formula. This theory lifts the usual Mobius theory
for lattices, where the central object is the incidence algebra of the lattice of flats.

We introduce Lie and Zie elements. The latter belong to the Tits algebra, and
the former to the module of chambers. The space of Zie elements is a right ideal
of the Tits algebra. Any special Zie element defines an idempotent operator on

xi



xii PREFACE

chambers whose image is the space of Lie elements. To any generic half-space, we
associate a special Zie element called the Dynkin element. Its action on chambers
generalizes the left bracketing operator in classical Lie theory. We define a substi-
tution product and establish a presentation of Lie. This generalizes the familiar
presentation of the classical Lie operad. Antisymmetry is encoded in the notion of
orientation of the rank-one arrangement and the Jacobi identity in the form of a
linear relation among chambers obtained by “unbracketing” lines of the rank-two
arrangements. This is same as saying that the space of Lie elements is isomorphic,
up to orientation, to the top cohomology of the lattice of flats. This generalizes
a celebrated theorem due to the combined work of Joyal, Klyachko and Stanley.
We introduce the Lie-incidence algebra and show that it is isomorphic to the Tits
algebra. This is intimately connected to the two-sided Peirce decomposition of
the Tits algebra. The latter can be understood in terms of left and right Peirce
decompositions of chambers and Zie elements respectively.

The Birkhoft algebra is split-semisimple. For the Tits algebra, complete systems
of primitive orthogonal idempotents are in correspondence with algebra sections of
the support map. We obtain many interesting characterizations of such sections.
This aspect of the theory generalizes the classical theory of Eulerian idempotents.
Noncommutative zeta and Mobius functions, and special Zie families are among
the various concepts in correspondence. For reflection arrangements, there is a
similar theory for the subalgebra of the Tits algebra invariant under the action of
the Coxeter group. (The opposite of this algebra is the Solomon descent algebra.)

Precedents

This work benefits from and builds on some important recent developments.
For the representation theory of the Tits algebra, we mention work of Brown, Dia-
conis and Saliola propelled by a landmark paper of Bidigare, Hanlon and Rockmore.
(Older work of Solomon on the descent algebra has also been influential.) Some
of these results are given in the generality of left regular bands and even bands.
Further generalizations of this kind appear in work of Steinberg. For Lie theory,
we mention work of Barcelo, Bergeron, Bjorner, Garsia, Patras, Reutenauer and
Wachs. Saliola’s work also implicitly contains elements of Lie theory. Explicit
references to Lie are made only for the braid arrangement and the reflection ar-
rangement of type B. The work of Joyal, Klyachko and Stanley relating Lie to
order homology is for the braid arrangement. On the other hand, related results on
order homology in the literature are usually given in the generality of arrangements
or beyond. There have been several other contributors; most of them are mentioned
in the main introduction. Two new entrants are the mathematicians Janus and Zie.

Organization

The text is organized in two parts. In Part I, the emphasis is on set-theoretic
objects associated to hyperplane arrangements such as posets, monoids and the
action of monoids on sets. In Part II, the emphasis is on linear objects such as
algebras and their modules. There is a Notes section at the end of each chapter
where detailed references to the literature, including discussions on alternative ter-
minology and notation, are provided. Background information on topics such as
Mobius functions, incidence algebras, representation theory of algebras and bands
is provided in Appendices at the end of the main text. A notation index and a
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subject index are provided at the end of the book. Pictures and diagrams form
an important component of our exposition which has a distinet geometric flavor.
Numerous exercises are interspersed throughout the book.

The text is not meant to be read linearly from start to finish. We encourage
readers to take up a particular chapter or section of their interest and backtrack as
necessary. As an aid, the diagram of interdependence of chapters and appendices
is displayed below.

13 14 A — 1,2,7

B— 1234

+ >10< C — 1,15.16

D — 9.11,12,13,16

E— 1.8

—_—_—N— W

A directed path from 7 to j indicates that some basic familiarity with Chapter 7 is
necessary before proceeding to Chapter j. A dashed arrow from i to j means that
the dependence of Chapter j on Chapter ¢ is minimal, that is, restricted to some
section or example.

Chapter 6 is not shown in the above diagram. It discusses the braid arrange-
ment, the reflection arrangement of type B and other examples. They are employed
frequently in later chapters for illustration.

Readership

We have strived to keep the text self-contained and with minimum prerequisites
with the objective of making it accessible to advanced undergraduate and begin-
ning graduate students. We hope it also serves as a useful reference on hyperplane
arrangements to experts. The book touches upon several fields of mathematics such
as representation theory of monoids and associative algebras, posets and their in-
cidence algebras, lattice theory, random walks, invariant theory, discrete geometry,
algebraic and geometric combinatorics, and algebraic Lie theory.

Scope

The theory of hyperplane arrangements has grown enormously in several differ-
ent directions in the past two decades. The text is not meant to be a comprehensive
survey of the entire theory. For instance, topics such as singularities, integral sys-
tems, hypergeometric functions and resonance varieties find no mention in the book.
For these, one may look at (15, 121, 138, 157, 177, 329, 413] and references
therein.



xiv PREFACE

Future directions

Our constructions are all based on the choice of a real hyperplane arrangement.
It is apparent, moreover, that a central role is played by the Tits monoid of faces of
the arrangement. It is tempting to try to extend the theory to more general classes
of monoids, particularly bands and left regular bands. We have kept our focus on
arrangements, although such generalizations offer a promising line of resecarch. We
also mention the Janus monoid, the category of lunes and noncommutative Mobius
functions as important objects worthy of further study. Our choice of topics has
mainly been guided by applications to the theory of species, operads and Hopf
algebras which we plan to develop in future work.
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Introduction

Part I

Arrangements. (Chapter 1.) A hyperplane arrangement A is a set of hyperplanes
(codimension-one subspaces) in a fixed real vector space. We assume that the
number of hyperplanes is finite and all of them pass through the origin. The
intersection of all hyperplanes is the central face. The rank of an arrangement
is the dimension of the ambient vector space minus the dimension of the central
face. An arrangement has rank 0 if it has no hyperplanes, rank 1 if it has one
hyperplane, and rank 2 if it has at least two hyperplanes and all of them pass
through a codimension-two subspace.

Flats and faces. (Chapter 1.) Subspaces obtained by intersecting hyperplanes
are called the flats of the arrangement. We let TI[A] denote the set of flats. It is a
graded lattice with partial order given by inclusion. The minimum element is the
central face and the maximum element is the ambient space. The codimension-one
flats are the hyperplanes. Each hyperplane divides the ambient space into two half-
spaces. Their intersection is the given hyperplane. Subsets obtained by intersecting
half-spaces, with at least one half-space chosen for each hyperplane, are called the
faces of the arrangement. We let X[A] denote the set of faces. It is a graded poset
under inclusion. The central face is the minimum element. However, there is no
unique maximum face, so X[A] is not a lattice. A maximal face is called a chamber.
We let I'[A] denote the set of chambers. The linear span of any face is a flat. This
defines a surjective map

s: X[A] - II[A].

We call this the support map. It is order-preserving.

Birkhoff monoid and Tits monoid. (Chapter 1.) We view the lattice of flats
II[A] as a (commutative) monoid with product given by the join operation. We
call this the Birkhoff monoid. For flats X and Y, their Birkhoff product is X VY.
The poset of faces 3[A] is not a lattice. Nonetheless, it carries a (noncommutative)
monoid structure. We call this the Tits monoid. It is an example of a left regular
band (since it satisfies the axiom zyxr = xy). For faces F' and G, we denote their
Tits product by FG. The set of chambers I'[A] is a left X[A]-set, that is, for F a face
and C' a chamber, FC' is a chamber. The support map is a monoid homomorphism.

Janus monoid. (Chapter 1.) A bi-face is a pair (F, F’) of faces such that £ and
F’ have the same support. Let J[A] denote the set of bi-faces. The operation

(F,F')(G,G") := (FG,G'F’)

XV
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turns J[A] into a monoid. We call it the Janus monoid. ' Tt is the fiber product
of the Tits monoid X[A] and its opposite L[A]°P? over the Birkhoff monoid II[A].
This can be pictured as follows.

Janus monoid

N

Tits monoid opposite Tits monoid
Birkhoff monoid

The Janus monoid is a band (since every element is idempotent) which is neither
left regular nor right regular in general.

Arrangements under and over a flat. (Chapter 1.) From a flat X of an arrange-
ment A, one may construct two new arrangements: A%, the arrangement under X,
and Ax, the arrangement over X. The former is the arrangement obtained by
intersecting the hyperplanes in A with X, while the latter is the subarrangement
consisting of those hyperplanes which contain X. For flats X <Y, the arrangement
under Y in Ay is the same as the arrangement over X in AY. We denote this
arrangement by AY .

Cones. (Chapter 2.) Subsets obtained by intersecting half-spaces (with no restric-
tion) are called the cones of the arrangement. In particular, faces and flats are
cones. (A hyperplane is the intersection of the two half-spaces it bounds.) Let
Q[A] denote the set of all cones. It is a lattice under inclusion. The support map
extends to an order-preserving map

c: QA] - I[A.

We call this the case map. It sends a cone to the smallest flat containing that
cone. The case map is the left adjoint of the inclusion map II[A] — Q[A]. There is
another order-preserving map

)1 Q[A] — H[A]

which we call the base map. It sends a cone to the largest flat which is contained
in that cone. The base map is the right adjoint of the inclusion map. Note that
the base and case of a flat is the flat itself.

Cones whose case is the maximum flat are called top-cones. The poset of top-
cones is a join-semilattice which is join-distributive, and in particular, graded and
upper semimodular (Theorems 2.56, 2.58 and 2.60).

Lunes. (Chapters 3 and 4.) A cone is a lune if it has the property that for any
hyperplane containing its base, the entire cone lies on one side of that hyperplane.
Faces and flats are lunes. In general, any cone can be optimally cut up into lunes
by using hyperplanes containing the base of the cone (Theorem 3.27). Finer de-
compositions can be obtained by using hyperplanes containing a fixed flat lying
inside the base (Proposition 3.22). For instance, it is possible to cut a lune itself
into smaller lunes. The optimal decomposition of a flat X is X itself (since it is a
lune). An instance of a finer decomposition is to write X as a union of faces having
support X.

1 Janus Bifrons is a Roman god with two faces.
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Lunes which are top-cones are called top-lunes. The poset of top-lunes under
inclusion is graded (Theorem 4.9). We consider two partial orders on lunes. The
first partial order is the inclusion of lune closures (and is the restriction of the
partial order on cones), while the second is the inclusion of lune interiors. Both
extend the partial order on top-lunes and are graded (Theorems 4.12 and 4.26).

Lunes can be composed when the case of the first lune equals the base of the
second lune. This yields a category whose objects are flats and morphisms are lunes.
We call it the category of lunes. 1t is internal to posets under the second partial order
on lunes (Proposition 4.31). It also admits a nice presentation (Proposition 4.42).
A lune with base X and case Y is the same as a chamber in the arrangement AY.
Using this, composition of lunes can be recast as follows. For any flat X, there is a
map

I[A*] ® T'[Ax] — I'[A].

We call this the substitution product of chambers, see (4.18).

Braid arrangement. (Chapters 5 and 6.) The braid arrangement is the motivat-
ing example for many of our considerations. The key observation is that for this
arrangement, geometric notions of faces, flats, top-cones, and so on can be encoded
by combinatorial notions of set compositions, set partitions, partial orders and so
on. This correspondence between geometry and combinatorics is summarized in
Table 6.2. The braid arrangement is an example of a reflection arrangement whose
associated Coxeter group is the group of permutations. In the Coxeter case, one
can define face-types and flat-types. Face-types are orbits of the set of faces under
the Coxeter group action. Similarly, flat-types are orbits of the set of flats. For the
braid arrangement, face-types and flat-types correspond to integer compositions
and integer partitions.

Descent equation and lune equation. (Chapter 7.) Fix chambers C' and D.
The descent equation is HC = D. In other words, we need to solve for faces H such
that the Tits product of H and C' equals D. (This is related to descents of permuta-
tions in the case of the braid arrangement which motivates our terminology.) More
generally, we can fix faces F' and G, and consider the equation HF = (. In fact,
one can do the following. For any left ¥[A]-set h, the descent equation is H - = y,
where o and y are fixed elements of h, the variable is H. and - denotes the action of
Y[A] on h. Apart from finding the solutions, there is also interest in computing the
sum 3 (—1)"*%H) as H ranges over the solution set, with rk(H) denoting the rank
of H. For this, we attach to the solution set a relative pair (X, A) of cell complexes
whose Euler characteristic is the given sum, see (7.32). By construction X is either
a ball or sphere, but the topology of A is complicated in general. In our starting
examples h is either T'[A] or X[A]. In these cases, A also has the topology of a ball
or sphere. This leads to explicit identities, see (7.10) and (7.11a).

Fix a face H and a chamber D. The lune equation is HC' = D. The difference
is that now we need to solve for C'. For a solution to exist H must be smaller
than D. Assuming this condition, the solution set is precisely the set of chambers
contained in some top-lune (which explains our terminology). More generally, an
arbitrary lune can be obtained as the solution set of the equation HF' = G for some
fixed H and G. Since lunes have the topology of a ball or sphere, we can again
compute 3" (—1) ) explicitly, see (7.12a). An analysis with relative pairs, similar
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to the one for the descent equation, can be carried out for right ¥[A]-sets h, see
(7.41). The lune equation in this case is x - F' =y, with z,y € h.

Distance function and Varchenko matrix. (Chapter 8.) A hyperplane sep-
arates two chambers if they lie on its opposite sides. The distance between two
chambers is defined to be the number of hyperplanes which separate them. Fix a
scalar ¢, and define a bilinear form on the set of chambers I'[A] by

(2 10 5 qdist,((,‘m‘

Here C' and D are chambers and dist(C, D) denotes the distance between them.
The determinant of this matrix factorizes with factors of the form 1 —q’, see (8.41).
In particular, the bilinear form is nondegenerate if ¢ is not a root of unity.

More generally, assign a weight to each half-space, and define (C, D) to be
the product of the weights of all half-spaces which contain C' but do not contain
D. Setting each weight to be ¢ recovers the previous case. A factorization of the
determinant of this matrix was obtained by Varchenko (Theorem 8.11). (He worked
in the special case when the two opposite half-spaces bound by each hyperplane
carry the same weight.) Lunes play a key role in the proof. The Varchenko matrix
can be formally inverted using non-stuttering paths, see (8.30).

It is fruitful to consider a more general situation where we start with an ar-
bitrary top-cone, and restrict the Varchenko matrix to chambers of this top-cone.
The determinant of this matrix also factorizes. This more general result is given in
Theorem 8.12. Specializing the top-cone to the ambient space recovers the previ-
ous situation. The special case of weights on hyperplanes is given in Theorem 8.22.
This latter result has been obtained recently by Gente independent of our work.

Part 11

Birkhoff algebra and Tits algebra. (Chapter 9.) The lincarization of a monoid
over a field k yields an algebra. Let M[A] denote the linearization of 11[A], and
Y [A] denote the linearization of X[A] over k. We call these the Birkhoff algebra
and the Tits algebra, respectively. These are finite-dimensional k-algebras (since
the original monoids are finite). The linearization of I'[4], denoted [A], is a left
module over [A]. One can linearize the support map as well to obtain an algebra
homomorphism s : [A] — MN[A].

The Birkhoff algebra IM[A] is isomorphic to k™, where n is the number of flats.
In other words, M[A] is a split-semisimple commutative algebra (Theorem 9.2). (By
a result of Solomon, this holds for any algebra obtained by linearizing a lattice.)
The coordinate vectors of k™ yield a unique complete system of primitive orthogonal
idempotents of M[A]. We denote them by Qx. as X varies over flats. The simple
modules over MN[A] are all one-dimensional, and given by Qx - MN[A]. Further. any
module h is a direct sum of simple modules. More precisely, we have the Peirce

decomposition 2
h=¢Pax-h.
X

2A decomposition of a module using an orthogonal family of idempotents is called a Peirce
decomposition.
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and the simple module Qx - M[A] occurs in the summand Qx - h with multiplicity
equal to its dimension (Theorems 9.7 and 9.8). As a consequence, the action of any
element of M[A] on any module h is diagonalizable (Theorem 9.9).

The largest nilpotent ideal of an algebra A is called its radical, denoted rad(A).
The Birkhoff algebra has no nonzero nilpotent elements, so rad(M[.A]) = 0. In con-
trast, the Tits algebra has many nilpotent elements. In fact, rad(X[A]) is precisely
the kernel of the (linearized) support map s, hence

Y[A]/rad(Z[A]) = N[A].

This was proved by Bidigare. We say that L[A] is an elementary algebra since
the quotient by its radical is a split-semisimple commutative algebra. The simple
modules over Y[A] coincide with those over M[A] (since rad(X[A]) is forced to act
by zero on such modules). However, a module of ¥[A] does not split as a direct sum
of simple modules in general. (An example is provided by the module of chambers
M.A].) Similarly, the action of an element of £[A] on a module h is not diagonalizable
in general. Nonetheless, by taking a filtration of h, one can gain detailed information
about the eigenvalues and multiplicities of the action (Theorem 9.44). This result
for h := [ A] was first obtained by Bidigare, Hanlon and Rockmore (Theorem 9.46);
their motivation for considering this problem came from random walks. The above
line of argument was given by Brown.

Any left module h over the Tits algebra has a primitive part which we denote
by P(h). It consists of those elements of h which are annihilated by all faces
except the central face (which acts by the identity). Dually, any right module h
has a decomposable part which we denote by D(h). The duality is made precise in
Proposition 9.61.

Janus algebra. (Chapter 9.) Let J[A] denote the linearization of J[A]. We call
this the Janus algebra. Just like the Tits algebra, the Janus algebra is elementary,
and its split-semisimple quotient is the Birkhoff algebra. Interestingly, the Janus
algebra admits a deformation by a scalar ¢. When ¢ is not a root of unity, the ¢-
Janus algebra is in fact split-semisimple, that is, isomorphic to a product of matrix
algebras over k. There is one matrix algebra for each flat X, with the size of the
matrix being the number of faces with support X (Theorem 9.75). As a consequence,
the g-Janus algebra, for ¢ not a root of unity, is Morita equivalent to the Birkhoff
algebra (Theorem 9.76). This is completely different from what happens for ¢ = 1.

Eulerian idempotents. (Chapter 11.) Let us go back to the Tits algebra X[A].
An Eulerian family E is a complete system of primitive orthogonal idempotents of
Y [A]. Eulerian families are in correspondence with algebra sections M[A4] < X[A]
of the support map s. The construction of such sections is the idempotent lifting
problem in ring theory. For elementary algebras, lifts always exist and any two
lifts are conjugate by an invertible element in the algebra. For each X, we let Ex
denote the image of Qx under an algebra section, thus, s(Ex) = Qx. The Ex are
called Fulerian idempotents and constitute the Eulerian family E. Apart from being
elementary, the Tits algebra is also the linearization of a left regular band. This
allows for many interesting characterizations of Eulerian families (Theorems 11.20,
11.40 and 15.44). A highlight here is a construction of Saliola which produces an
Eulerian family starting with a homogeneous section of the support map. (A ho-
mogeneous section is equivalent to an assignment of a scalar u?" to each face F such
that for any flat X, the sum of u’’ over all F with support X is 1.) This construction
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employs the Saliola lemmma (Lemma 11.12), which is an important property of any
Eulerian family. For a good reflection arrangement, we give cancelation-free for-
mulas for the Eulerian idempotents arising from the uniform homogeneous section
(Theorem 11.53).

Diagonalizability. (Chapter 12.) An element of an algebra is diagonalizable if it
can be expressed as a linear combination of orthogonal idempotents. All elements
of the Birkhoff algebra are diagonalizable. However, that is not true for the Tits
algebra. For instance, no nonzero element of the radical of £[A] is diagonalizable.
Following another method of Saliola, one can characterize diagonalizable elements
using existence of eigensections (Corollary 12.15). Examples include nonnegative
elements (Theorem 12.20) and separating clements (Theorem 12.17). The separat-
ing condition was introduced by Brown. For separating elements, there is a formula
for the eigensection (arising from the Brown-Diaconis stationary distribution for-
mula (12.6)), and a formula for the Eulerian idempotents due to Brown, see (12.12)
and (12.13). Apart from these families, we also consider diagonalizability of specific
clements such as the Takeuchi element (12.23) and the Fulman elements (12.38).
For the braid arrangement, these include the Adams elements; their diagonalization
is given in (12.49).

Lie elements and JKS. (Chapters 10 and 14.) Recall that the Tits algebra T[A]
acts on the space of chambers I'[A]. We put

Lie[A] := P(T[A]),

the primitive part of [[A]. This is the space of Lie elements. We refer to this
description of Lie[A] as the Friedrichs criterion. There are other characterizations
of Lie[A] such as the top-lune criterion and the descent criterion. In the case of
the braid arrangement, Lie[A] is the space of classical Lie elements (the multilinear
part of the free Lie algebra). The top-lune criterion extends a classical result of
Ree for the free Lie algebra, while the descent criterion extends a result of Garsia.
The top-lune criterion says the following: A Lie clement is an assignment of a
scalar ¢ to each chamber C such that the sum of these scalars in any top-lune
(containing more than one chamber) is zero. In fact, by cutting a top-lune into
smaller top-lunes, it suffices to restrict to top-lunes whose base is of rank 1. The
dimension of Lie[A] equals the absolute value of the Mdbius number of A. There
are many ways to deduce this, see for instance (10.24) or (11.63). There are also
many interesting bases for Lie[A]. We discuss the Dynkin basis (which depends on
a generic half-space) and the Lyndon basis (which depends on a choice function).
For any flat X, there is a map

Lie[A*] @ Lie[Ax] — Lie[.A].

We call this the substitution product of Lie, see (10.28). It is obtained by restricting
the substitution product of chambers. All Lie elements of A can be generated by
repeated substitutions starting with Lie elements of rank-one arrangements (which
incorporate antisymmetry), subject to the Jacobi identities in rank-two arrange-
ments (Theorem 14.41). Antisymmetry can be visualized as follows.
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