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PREFACE

The subject of this book is the analysis of elasticslly supported beams. The
elastic support is provided here by a load-bearing medium, referred to as the
“foundation,” distributed continuously along the length of the beams. Such
conditions of support can be found in a large variety of fechnical problems. In
some of these problems the identity of the beam and the foundation can be easily
established, as in the case of actual foundation structures or in the case of the
railroad track. In other problems, however, which constitute perhaps the most
fruitful field of application of this theory, the concept of beam and foundation is
more of an abstract nature. Such conditions we find in networks of beams and
in thin-walled tubes, shells, and domes, where the elastic foundation for the
beam part is supplied by the resilience of the adjoining portions of a continuous
elastic structure. Apart from the diversity of technical applications, there is a
considerable variation possible in the fundamental subject itself: The flexural
rigidity of the beam or the elasticity of the foundation may be & variable quan-
tity; the axis of the beam may be straight or curved or the character of the
applied loading may be axial, transverse, or torsional, in addition to a combina-
tion of end conditions to whick any of these beams may be subjected. On the
whole, however, all:these problems are closély related through an affinity in their
mathematical formulation. This renders the entire subject matter eminently
suitable for a comprehensive treatment, which is the aim of the present volume.

" In the course of this work much help was derived from the numerous publica-
tions on the subjeet, including several monographs in German and Russian,
to which references are made in the footnotes. In attempting to form a com-
prehensive unit of all this material it has been found that many questions of
interest to research men and practicing engineers have not yet been answered.
This made it necessary to develop new solutions, to work out new cases of load-
ingg; ete., the result of which is that a sizable portion of the material contained
in this volume is of a kind that has not been published before. Among these
new developments we may mention in particular the use of end-conditioning
forees for producing beams of finite length under any combination of loading,
the reduction of the problem of axially symmetrical deformation of conical and
spherieal shells to that of bending of beams on elastic foundation, and the in-
troduction of the concept of foundation layers representing partial continuity
in the material of the foundation. In additionto these a large number of new
formulaa for specific cases of loading and end conditions were wo{ked out, to-
gether with illostrative examples, which appear interspersed throughout the
text. Though the problems discussed are chiefly in the field of statics, the solu-
tions developed in this connection may also be employed in other fields of mathe-
matieal physies, particularly in vibrations and acoustics.

‘There are two basie types of elastic foundations. The first type is char-
acterised by the fact that the pressure in the foundation is proportional at every
point to the deflection occurring at that point and is independent of pressures or
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v PREFACE

deflections produced elsewhere in the foundation. Such a correlation between
pressures and deflections implies a lack of continuity in the supporting medium,
just as if it were made up of rows of closely spaced but independent elastic springs.
The second type of foundation is furnished by an elastic solid which, in contrast
to the first one, represents the case of complete continuity in the supporting
medium, Though the first type is mathematically simpler, one should not regard
it, ag some investigators do, as an approximation or an “elementary” solution
for the elastic solid foundation, because it has its own physical characteristies
and significance. Foundations of the first type have by far the wider field of ap-
plication in physical sciences, and most of the problems mentioned above can be
reduced to elastic supporting. conditions falling under this classification. For
this reason the larger part of the book, nine chapters out of the ten, is devoted to
problems arising in connection with such an essentially discontinuous type of
foundation, and only the last chapter deals with cases in which the supporting
body is an elastic continuum. Problems of continuity are introduced in the
tenth chapter with a discussion of foundation layers which, with their varying
and adjustable degree of continuity, form a useful transition between the two
basic types of foundations mentioned above. ) '

In the mathematical notation of this text a minor departure was made from
existing practice in that capital initial letters are used in the otherwise customary
notations for hyperbolic functions. The need for this arose from the fact that,
owing to the nature of the subject, solutions often appeared in lengthy and some-
times perplexing combinations of trigonometric and hyperbolie funetions. Thus
it became highly desirable to accentuate the difference in notation between these
two types of functions. and the use of a capital initial for the latter type was
found to be a simple and effective way to achieve the purpose. :

- The first manuseript for this book was prepared in 1936-37 during the tenure
of s-Horace H. Backham Postdoctorate Fellowship at the University of Michigan.
Since then the material has been revised several times and enlarged until it has
assumed its present form. The author takes this opportunity to express his
deep appreciation and gratitude to the University of Michigan for granting the
generous fellowship which made this undertaking possible and for supporting the
publication of the ensuing results. During the work much encouragement and
benefit were derived from personal contacts with Professor Stephen P. Timo-
shenko, who first aroused the author’s interest in this subject and who proved
to be a constant source of inspiration. Itis also a pleasure to acknowledge the
valuable assistance received from Professor Edward L. Eriksen, Dr. Merhyle F.
Spotts, and Dr. Stewart Way. The author is greatly indebted to Dr. Eugene
8. McCartney, editor of the University of Michigan Press, for his care in steer-
ing the publication through the press under wartime conditions and for the
many constructive suggestions that both he and Miss Grace Potter, former
assistant editor, have contributed. ©

' M. HeréNYI
Northwestern Universily
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CHAPTER I
- GENERAL SOLUTION OF THE ELASTIC LINE

In the major part of this work the analysis of bending of beams on an elastic
foundation is developed on the assumption that the reaction forees of the founds-
tion are proportional at every point to the deflection of the beam at that point.
This assumption was introduced first by E. Winkler* in 1867 and formed the
basis of H. Zimmermann’s classical work on the analysis of the railroad track,
published in 1888. Though the early investigators thought chiefly of soil as
the supporting medium, it was later found that there are other fields where the
conditions of Winkler’s assumption are much more rigorously satisfied. Two
such fields of application were discovered to be of particular importance, and
they are discussed in detail in the course of this book. One of these is con-
cerned with networks of beams, which are characteristic in the construction of
floor systems for ships, buildings, and bridges; the other deals with thin shells of
revolution and includes such subjects as pressure vessels, boilers, and containers,
as well as large-span modern reinforced concrete halls and domes. While the
theory of beams on elastic foundation holds rigidly for most of the problems
mentioned above, its application to soil foundations should be regarded only as a
practical approximation. The physical properties of soils are obviously of
a much more complicated nature. than that which could be accurately repre-
sented by such & simple mathematical relationship as the one assumed by
Winkler. There are, however, some important points which can be brought
up in supporting the application of this theory to soil foundations. Under cer-
tain conditions the elasticity of soil is undeniable; it can propagate sound waves,
for instance. Also, the second, and most debated, part of Winkler’s assumption,
that the foundation deforms only along the portion directly under loading, has,
since A. Foppl's classical experiment,} often been found to be true for a large
variety of soils. If we take these things into consideration, there is reason to
believe that the Winkler theory, in spite of its enmphclty, may often more ac-
curately represent the actual conditions existing in soil foundations than do
some of the more complicated analyses advanced in recent years and dwcussed
in the Iast chapter of this book, where the foundation is regarded as & continuous
isetropic elastic body. W‘lnch one of these theories to apply, and how much-
continuity in the supporting medium to assume, can be decided, however, in a
given case only by physical testing of the material of the foundation under
congideration.

* Die Lehre von der Elastizitat und Festigkeit (Prag, 1867), p. 182, -
1 Die Berschnung des Eisenbahnoberbaues (Berlin, 1888; 2 ed. ;. Berlin, 1930).
'3 A. Foppl, Vorlesungen dber technische Mechanik (9th ed.; Leipsig, 1922), 111, 258.
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2 BEAMS ON ELASTIC FOUNDATION

L. The Differential Equation of the Elastic Line

Consider a straight beam supported along its entire length by an elastic
medium and subjected to vertical forces acting in the principal plane of the sym-
metrical cross section (Fig. 1). Because of this action the beam will deflect,
producing continuously distributed reaction forees in the supporting medium.
Regarding these reaction forces we make the fundamental assumption that their
intensity p at any point is proportional to the deflection of the beam y at that
point: p = ky The reaction forces will be assumed to be acting vertically and
opposing the deflection of the beam. Hence where the deflection is directed
downward (positive) there will be a compression in the supporting medium,
but, on the other hand, where the deflection happens to be negative, tension will
be produced; for the present we suppose the supporting medium ta be able to
take up such tensile forces.

The assumption p = ky implies the
7Ty statement that the supporting medi-
B um is elastic; in other words, that
its material follows Hooke’s law.
iy Its elasticity, therefore, can be

y Pky characterized by the force which,

Fa. 1 . distributed over a unit area, will

cause & deflection equal to unity.

This constant of the supporting medium, k lbs./in.?, 8 called the modulus of the
foundation.

Asgume that the beam under consideration has a uniform cross section and
that b is its constant width, which is supported on the foundation. A unit
deflection of this beam will cause reacticn bk in the foundation; consequently,
at a point where the deflection is y the intensity of distributed reaction (per
unit length of the beam) will be

plbs./in. = bhy. - (a)
For the sake of brevity we shall use the symbol k Ibs./in.? for b in. X ko Ibs,/in.*
in the following derivations, but it is to be remembered that this k includes the
effect of the width of the beam and will be numerically equal to k, only if we deal
with & beam of unit width.

While the loaded beam deflects, it is possible that besides the vertical reac-
tions there may also be some horizontal (frictional) forces originating along the
surface where the beam is in contact with the foundation. The influence of
such horizontal forces on the deflection line will be shown in a later chapter;
for the present their (poesibly small) effect will not be considered, and the reac-
tion forces on the foundation will be assumed to be vertical at every cross section.

Let us take an infinitely small element enclosed between two vertical* cross

* By this we assume that the slope is 8o small compared to unity that crou sections
(normal to the elastic line) can be replaced by vertical sections. Such approximation

cannot be used when investigating the effect of axial forces on the deflection of the beam
(Chapter VI).




GENERAL SOLUTION OF THE ELASTIC LINE 3

sections & distance dz apart on the beam under consideration.. Assume that
this element was taken from a portion where the beam was acted upon by a
distributed loading ¢ lbs./in. The forces exerted on such

an element are shown in Figure 2. The upward-acting e g
shearing force, Q, to the left of the cross section is con-
sidered positive, as is the corresponding bending moment,
M, which is a clockwise moment acting from the left on ( )
M Ned
pdx-Jeapdx
o0

the element (the moment of a positive ). These positive
directions for @ and M will be kept in all later deriva-
tions. Considering the equilibrium of the element in
Figure 2, we find that the summation of the vertical
forces gives Fig. 2

¢ - @+ dQ) + kydz -~ gdz = 0,
whenece

:—S=ky—q- (b)

Making use of the relation @ = dM /dzx, we can write -

WU 4y ©

Using now the known differential equation of a beam in bending, EI(d"y/dz*) =
—M, and differentiating it twice, we obtain

d'y &M
EI Rl =2 G))
Hence by using (c) we find
d*
EI __l” - —ky +q )

This is the differential equatibn for the deflection curve of & beam supported on
an elastic foundation. Along the unloaded parts of the beam, where no distrib-
uted load is acting, ¢ = 0, and the equation above will take the form

L @
It will be sufficient to consider below ouly the general solution of (2), from which

solutions will be obtained also for cases implied in (1) by adding to it a particular
integral corresponding to ¢ in (1).
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Substituting y = ™ in (2), we obtain the characteristic equation
. k

mn = ——

EI
whieh has the roots

o= —me = g (L9 =21 ),

ok . _ )
m o= —m = Af e (S D) = M1,
The general solution of (2) takes the form

Y= 4™ Ae™ o A™ + Ae™, (o).
where
o/ &
Using

™ = oondz + i sin Az,
e = cos Az — i sin Mz, -
and introducing the new constants Cy, Cs, Cs, and C,, where
A1+ A)=C, i(di— A) =0,
(Ae+ 43) =Cs, (A2 —A5)=C,,
we can write (e) in a more convenient form:

y = €%(Cy cos Az + C: sin A7) + € *(C; cos Az + C, sin Az). (3a)

Here A includes the fléxural rigidity of the beam as well as the elasticity of the
supporting medium, and is. an important factor influencing the shape of the
elastic line. For this reason the factor \ is called the characterisitc of the system,
and, since its dimension is length™, the term 1/X is frequently referred to as the
characteristic length, Consequently, Az will be an absolute number,

Expression (3a) represents the general solution for the deflection line of a -
straight prismatic bar’ supported on an elastic foundation and subjected to
transverse bending forces, but with no g loading. An additional term is néces-
sary where there is a distributed load. By differentiation of (3a) we get
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}‘% < &[Ci(cos Az — 8in Az) + Ca(eos Az + sin Az)]

— ™[Cy(c0s Mz + sin M) — Ci(eos Az — sin M),

_L"_f!.g.;-"'(clsinm—-c,eosu)+e“*=(c,sinm—c-.cosm) L(ab—d)
0 &
1 4 . _ o
T”d%s—hlcl(cosm+mnkx) Ca(cos Az — sin Az)]
+ ¢7[C3(cos Az — sin Az) + Ci(cos Az + sin Az)).)

Knowing that

W _ tang, —EI%Y = M, and —Er%Y =g ®

‘a‘z“ 4 . dxt ’ aB ]

we can obtain the general expressions for the slope 8* of the deflection line as
well as for the bending moment M and the shearing force @ from (3 b~d). - The
intensity of pressure in the foundation will be found from (3a) to be p = ky.

In applying these general equations, or corresponding ones including the term
dependent on g, to particular cases the next step is to determine the-constants
of integration C1, C3, Cy, and Cy. These integration constants depend on the
manner in which the beam is subjected to the loading and have constant values
along each portion of the beam within which the elastic line and all its deriva-
tives are continuous. Their values can be obtained from the eonditions existing
at the two ends of such continuous portions. Out of the four quantities (y, 6,
M, and Q) characterising the condition of an end, two are usually known at
each end, from which sufficient data are furnished for the determination of the
constants C. _

" When a beam is subjected to various loads the elastic line must be resolved
into continuous portions (for example, A-a, a-b; b—c, and ¢-B in Fig. 1); then at
the intermediate points the consideration of the material continuity of the beam
will furnish the data for determining the integration constants for each of these
portions. -

Although from the point of view of mathematics the problem can be com-
pletely solved in this way,t the procedure is laborious and not well fitted to
practical computation. The work can be considerably simplified, however, if
the general solution is written in such a form that the integration constants ob-
tain a physical interpretation in terms of the end conditions. This method of
solution will be discussed in the next section,

* On the basis of the approximate bending formula used above in the derivation (d)
it is permissible to put tané@ = 6.

¥ This method was used by K. Hayaski in his book Theorie des Trigers auf elastischer
Unterlage und thre Anwendung auf den Tiefbau (Berlin, 1921).
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2. Interpretation of the Integration Constanis

Assume a beam subjected to various loading (such as moment M, force P,
and distributed load-q) and take the origin of an z, ¥ coordinate system at the
left end of the beam (Fig. 3). ,

In (3 a—d) general expressions were obtained for the y, 6, M, and Q guantities
of & beam in bending. Taking in these equations z = 0, we get the conditions
at the left end of our beam as

Wloao = 9o = C1 + Cs,

[% = 00 = A(Cl + C’ - CI + 04),

[—~EI dl’/]m = Mo =~ D'EI(~C, + C), ®
[ z:g =Q =2EI(C, —C: — C; — 6'4.).J
Expressing the (’s as unknowns, we have, from the equations above,
1 1 ]
- Cx"}!lo“"a%'l‘m@o:
1 1 1
G=n% " pE ¥ ~ gom % | ®

1 1 |
C's"iyo"'zxﬂo—-iiE—IQh

Oo+

1 .
4»1:1 ~ awEl &)

Substituting these expressions for the C’s in (3a) and putting 3(¢"* + ¢™) =
Cosh Az and }(¢™* — ¢™™) = Sinh Az, we find that the general equation of the
elastie line will take the form

Ve = WFi02) +§ &Fi00) — o MFiQ) — b QFi2) (0

)\’EI x-m
where ‘
Fi(Ax) = Cosh Az cos Az,
Fi(Az) = }(Cosh \z sin Az + Sinh Az cos Az),
Fy(Az) = }Sinh )z sin Az,
Fi(Az) = }(Cosh Az sin Az — Sinh Az cos Mx).

It is seen that in (c) the general solution was put in a form in which the previous
integration constants were replaced by the o, 6 , Mo, and Q, quantities existing
at the end z = 0 of the beam. On account of this feature the method developed
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on the basis of (c) is termed the method of tnitial conditions;* because the simple
interpretation of the integration constants it has a considerable advantage over
the method outlined in the previous section.

A more generalized form of (c) can be obtained through the following reason-
ing: Assume that the ¥, 6, My, and @, quantities are known; then: we can
proceed from the left end of the beam toward the right along the unloaded
portion A—¢ until we arrive at the point where the first load is applied to the
beam, Assume that the first loading is a concentrated moment M, as shown in
Figure3. Evidently this moment M must
have an effect to the right (z > uag) of its
point of application similar to that which
the initial moment M, had on the A-a
portion (0 < z < ua) of the elastic line.
Seeing from (¢) that the factor of M, was
—(1/NEINFs(\z), we can conclude that
the moment, M at a should have a modifying effect of — (1/AEDFy{\Mz — u.)IM
_ on the elastic line to the right of point a, where z > u,. Consequently, we
obtain the deflection curve on the portion a-b by adding this Iast expression to ().

In a similar way we find that the force P will have an influence
(1I/NEDF{\(z — us))P1 on the deflection line to the right of point b. Finally,
gince the distributed loading ¢ can be regarded as consisting of infinitesimal con-
centrated forces, we can conclude that its effect for the £ > ¢ portion must be

(a/¥ED) [ FiMz ~ Wl du. Forz > d the ppper imit of the integral becomes

d. Summing up these results, we find the equation of the deflection line for
such a case as that shown in Figure 8} to be

Fia. 3

b = 10 Fi0) + § 6F02) — ol MoFi02) — o QuFi0)

MF @ — u)] + L. PRz — up)]

X’EI NEI

+ g7 || aFube — ] du. . 4®)

* This method was developed largely in Russia. See A. A. Umansky, Analysis of Beams
on Elastic Foundaiion, Central Research Institute of Avto-Transportation (Leningrad,
1933) ; and idem, Spmal Course in Structural Mechanics, General Redsction of Literature of
Building (Leningrad-Moscow, 1935), Part I. These publications contain also bibliogra-
phies of earlier Russian works.

1 Here the sign of the term taken from (¢) had to be changed, since the downward-
acting force P represents a negative shear for the portion to the right of point b.

1 The expression for the deflection line could be generalised in a still larger sense by
including among the loadings concentrated changes in the deflection ordinates and in the
slopes, and also by regarding distributed moments as a loading type. Expressions for such
cases are to be found in Umansky, opera cit.
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This equation includes the effect of M, P, and g acting on the beam between the
left end (x = 0) and the point under consideration (z = z). If any of these
loadings are absent on this portion of the beam the corresponding term in (4a):
should be disregarded. By taking the consecutive derivatives of the equation
above and putting ‘

dF, dF, dF,

dF,;
d—g—‘é*4ﬁF4, EaAF“ »E=AF” and E‘; = AFy,

we obtain the expressions helow for slope, moment, and shearing force:
1 1
AET NET

3

0, = 6 Fi(Ax) - Mon(M) - QFi(Az) — 4)”17402)

1

— <7 MPNE = 1)} + o PRy — )]

NET

] 3 2
+ ET f aFsA(z = u)] du,

M. = MaFi(02) +5 GF0) + & 0sFi02) + & 6 P,02) (4b-d)
+ MENE ~ wal — JPRDG — w)] ~ 1 [ aFie — wldu,

Q = QFi02) +E R0z + X aR02) ~ DMFO2)

— AMF Mz — uw)] — PFiA(z — up)] — f zqF;[X(:c — u)] du. .
. : )

It is seen that the initial conditions appear in equations (4 a-d) according to a
systematic scheme. In each of these equations all the four initial conditions
are present and the order of their succession is shifted by one place at a time as we
proceed from (4a) to (4d). The same systematic shifting can be observed also
in the F functions connected with the loading terms M, P, and g.

Putting z = [ into (4 a—d), we obtain the y,, 6;, M,, and Q; quantities for
the right end of the beam as expressed in terms of the initial conditions and the
loadings. These relations can then be used to determine the unknown initial
conditions. As we have said, out of the four quantities which define the ¢ondi-
tion of one end of a beam, two are usually known at each end in every case.
There remain two unknowns at each end; altogether there are four unknown
quantities which can be determined from (4 a-d). ,

Consider for instance the beam in Figure 3 with both ends free. Here we
have My = 0,Q, = 0and M, = 0,Q; = 0. Substituting these values in (4 a-d)
we.find that the left-hand side of (4c) and .(4d) will be zero, while the right-hand
side will contain only two unknown initial conditions, y, and 6. From the two
simultaneous equations the two unknown quantities can be determined; then,
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substituting these, in turn, in the general expressions (4 a~d), we can proceed
to caleulate the ., 8;, M., and Q, values for any intermediate point on the
beam. The outstanding feature of this method is the simple physical inter-
pretation of the integration constants and the systematic order in which these
constants appesr in the equations. For practical computation, however, the
method can be considered only if there are numerical tables of the F functions .
available, and even then more complicated loadings involve lengthy and intricate
caleulations.

3. Method of Superposition

In the preceding sections two different methods have been presented, both
of them aiming to determine the integration constants from the prescribed end
conditions of the elastic line. It has been seen that the main difficulty in
applying the general solution to particular problems arises in the determination
of the integration constants, which involves a considerable amount of work in
both methods discussed.

These difficulties can be largely avoided by using the method of superposition.*
The advantage of this method lies in the fact that the determination of the
integration constants for & beam of unlimited length (an infinitely long beam)
is very simple and that, consequently, the equation of the deflection line for
any loading on the infinitely long beam can be obtained in a concise form. Such
deflection formulas will be derived in Chapter II; in Chapter III it will be shown
that by superposing the formulas obtained for the infinitely long beam solutions
can be derived for beams of any length and with any loading and end conditions.
This procedure will prove o be the simplest in the application to particular
problems; it can be used also when, in addition to the lateral loads, axial forces
" or twisting moments are seting on the beam.t

* The application of the methad of superposition in the solution of beams of inite
Jength on an elastic foundation was first proposed by the writer in a paper called “Analysis
of Bars on Elastic Foundation,” Final Report of the Second International Congress for Bridge
dnd Structural Engineering (Berlin-Manich, 1586},

t The scheme in the method of initial conditions loses its periodical character when
axial forees, in addition to the transverse loading, are acting on the beam.



CHAPTER II
BEAMS OF UNLIMITED LENGTH

I. The Infinite Beam

4. Concentrated Loading

Consider a beam of unlimited length in both directions (an infinite beam)
subjected to a single concentrated force P at point O (Fig. 4). Because of the
apparent symmetry of the deflection
curve we need to consider only the half
which is to the right of point O, the
origin of the x, y rectangular coordi-
nate system.

Fic. 4 ‘ In §1 we found that the general
‘ solution for the deflection curve of a
beam subjected to transverse loading can be written as equation (3a):

= €"(Cy cos \z + Cy8in Az) + ¢ **(Cy cos Mz + Cysin hz). (®)

In the present problem, dealing with a beam of unlimited Iength, it is reasonable
to assume that in an infinite distance from the application of the load the de-
flection of the beam must approach zero, that is, if x — «, then y — 0. This"
condition can be fulfilled only if in the equation above the terms connected with
¢"* vanish, which necessitates that in the case under discussion C; = 0and Cy = 0.

Hence the deflection curve for the right part (x > 0) of the beam will take the
form

y = ¢ (C; cos Az + Cisin Nz). - ®)
From the condition of symmetry we know that
dy] _
Eﬂ—: 2med) B 0,

that is, — (Cs — C) = 0, from which we find C; = C; = C. This last constant
of the equation

y = Cé™ (cos Az + sin Az) (c)

can be obtained from the consideration that the sum of the reaction forces will
keep equilibrium with the load P, that is,

2[kydz=P.

10
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Since 2kC .( ¢ (008 Az + sin Az) dz = 2kC(1/N), from 2kC(1/A) = P we get
C = PX/2k, and, substituting this in (¢) above, we have

y = o ¢™ (cos a -+ sin M), @
which gives the deflection curve for the right side (x = 0) of the beam. This
deflection curve is a wavy line with decreasing amplitude (Fig. 5a). The de-
flection under the load is yo = PA/2k; the zéro points of the line are
where cos Az + sin Az = 0, that is, at the consecutive values of Az = }r, {r,
i1y, etc.

Taking the successive derivatives of y (see [d]) with respect to z, we obtain
the expressions for §, M, and Q on the right side of the beam as

2
% =0 = —PT)‘ ¢ gin Az,
EId M =L i
- =M= ¢ (cos Az — sin \x), } (e-g)
d'y P —Ax
—Er%® = —=¢ €08 \I.
ds Q -2 J

The curves represented by the
equations above are shown in
- Figure 5. They have all the
features of damped waves.* At
the point of application of the
load (z = 0) or, to be precise,
infinitely close to the right of it,
we have the values 0 = 0, M =
P/4\, and Q = —P/2. In the
derivation of the general solution
for the elastic line (see p. 3) the
positive directions were defined
for the shearing force @ (positive
when acting upward on the left
of the elemental section) and
for the bending moment M (the
moment on the left of the element
in the direction of the positive
shearing force). As an extension
of this convention, we shall regard
83 positive quantities the downward-actmg loading (P), downward deflection
(), and the angular deflection () rotating clockwise. Equations (d-g) give the

* This is the reason why the characteristic ) is sometimes called the damping factor.




