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Preface

To a very high degree of accuracy, the space—time we inhabit can be taken
to be a smooth four-dimensional manifold, endowed with the smooth
Lorentzian metric of Einstein’s special or general relativity. The formalism
most commonly used for the mathematical treatment of manifolds and
their metrics is, of course, the tensor calculus {or such essentially equivalent
alternatives as Cartan’s calculus of moving frames). But in the specific
case of four dimensions and Lorentzian metric there happens to exist — by
accident or providence — another formalism which is in many ways more
appropriate, and that is the formalism of 2-spinors. Yet 2-spinor calculus
is still comparatively unfamiliar even now -some seventy years after
Cartan first introduced the general spinor concept, and over fifty years
since Dirac, in his equation for the electron, revealed a fundamentally
important role for spinors in relativistic physics and van der Waerden
provided the basic 2-spinor algebra and notation.

The present work was written in the hope of giving greater currency to
these ideas. We develop the 2-spinor calculus in considerable detail,
assuming no prior knowledge of the subject, and show how it may be
viewed either as a useful supplement or as a practical alternative to the
more familiar world-tensor calculus. We shall concentrate, here, entirely
on 2-spinors, rather than the 4-spinors that have become the more familiar
tools of theoretical physicists. The reason for this is that only with 2-
spinors does one obtain a practical alternative to the standard vector—
tensor calculus, 2-spinors being the more primitive elements out of which
4-spinors (as well as world-tensors) can be readily built.

Spinor calculus may be regarded as applying at a deeper level of struc-
ture of space—time than that described by the standard world-tensor
calculus. By comparison, world-tensors are less refined, fail to make trans-
parent some of the subtler properties of space—time brought particularly
to light by quantum mechanics and, not least, make certain types of
mathematical calculations inordinately heavy. (Their strength lies in a
general applicability to manifolds of arbitrary dimension, rather than in
supplying a specific space—time calculus.)

vit



viii Preface

In fact any world-tensor calculation, can, by an obvious prescription,
be translated entirely into a 2-spinor form. The reverse is also, in a sense,
true—and we shall give a comprehensive treatment of such translations
later in this book — though the tensor translations of simple spinor mani-
pulations can turn out to be extremely complicated. This effective
equivalence may have led some ‘sceptics’ to believe that spinors are
‘unnecessary’. We hope that this book will help to convince the reader that
there are many classes of spinorial results about space—-time which would
have lain undiscovered if only tensor methods had been available, and
others whose antecedents and interrelations would be totally obscured by
tensor descriptions.

When appropriately viewed, the 2-spinor calculus is also simpler than
that of world-tensors. The essential reason is that the basic spin-space is
two-complex-dimensional rather than four-real-dimensional. Not only
are two dimensions easier to handle than four, but complex algebra and
complex geometry have many simple, elegant and uniform properties not
possessed by their real counterparts.

Additionally, spinors seem to have profound links with the complex
numbers that appear in quantum mechanics.®* Though in this work we
shail not be concerned with quantum mechanics as such, many of the
techniques we describe are in fact extremely valuable in a quantum
context. While our discussion will be given entirely classically, the formal-
ism can, without essential difficulty, be adapted to quantum (or quantum-
field-theoretic) problems.

As far as we are aware, this book is the first to present a comprehensive
development of space-time geometry using the 2-spinor formalism. There
are also several other new features in our presentation. One of these is
the systematic and consistent use of the abstract index approach to tensor
and spinor calculus. We hope that the purist differential geometer who
casually leafs through the book will not automatically be put off by the
appearance of numerous indices. Except for the occasional bold-face
upright ones, our indices differ from the more usual ones in being abstract
markers without reference to any basis or coordinate system. Our use of
abstract indices leads to a number of simplifications over conventional
treatments. The use of some sort of index notation seems, indeed, to be
virtually essential in order that the necessary detailed manipulations can

* The view that space—-time geometry, as well as quantum theory, may be governed by
an underlying complex rather than real structure is further developed in the theory
of twistors, which is just one of the several topics discussed in the companion volume
to the present work: Spinors and space-time, Vol. 2: Spinor and twistor methods in
space—time geometry, (Cambridge University Press 1985).



Preface ix

be presented in a transparent form. (In an appendix we outline an alter-
native and equivalent diagrammatic notation which is very valuable for
use in private calculations.)

This book appears also to be breaking some new ground in its presen-
tation of several other topics. We provide explicit geometric realizations
not only of 2-spinors themselves but also of their various algebraic opera-
tions and some of the related topology. We give a host of useful lemmas for
both spinor and general tensor algebra. We provide the first compre-
hensive treatment of (not necessarily normalized) spin-coefficients which
includes the compacted spin- and boost-weighted operators 0 and p and
their conformally invariant modifications d, and p,, . We present a general
treatment of conformal invariance; and also an abstract-index-operator
approach to the electromagnetic and Yang—Mills fields (in which the
somewhat ungainly appearance of the latter is, we hope, compensated by
the comprehensiveness of our scheme). Our spinorial treatment of (spin-
weighted) spherical harmonics we believe to be new. Our presentation of
exact sets of fields as the systems which propagate uniquely away from
arbitrarily chosen null-data on a light cone has not previously appeared
in book form; nor has the related explicit integral spinor formula (the
generalized Kirchhoff-d’Adhémar expression) for representing massless
free fields in terms of such data. The development we give for the inter-
acting Maxwell-Dirac theory in terms of sums of integrals described
by zig-zag and forked null paths appears here for the first time.

As for the genesis of this work, it goes back to the spring of 1962 when
one of us (R.P.) gave a series of seminars on the then-emerging subject of
2-spinors in relativity, and the other (W.R.) took notes and became more
and more convinced that these notes might usefully become a book. A
duplicated draft of the early chapters was distributed to colleagues that
summer. Our efforts on successive drafts have waxed and waned over the
succeeding years as the subject grew and grew. Finally during the last three
years we made a concerted effort and re-wrote and almost doubled the
entire work, and hope to have brought it fully up to date. In its style we
have tried to preserve the somewhat informal and unhurried manner of the
original seminars, clearly stating our motivations, not shunning heuristic
justifications of some of the mathematical results that are needed, and
occasionally going off on tangents or indulging in asides. There exist many
more rapid and condensed ways of arriving at the required formalisms,
but we preferred a more leisurely pace, partly to facilitate the progress of
students working on their own, and partly to underline the down-to-earth
utility of the subject.
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Fortunately our rather lengthy manuscript allowed a natural division
into two volumes, which can now be read independently. The essential
content of Vol. 1 is summarized in an introductory section to Vol. 2.
References in Vol. 1 to Chapters 6-9 refer to Vol. 2.

We owe our thanks to a great many people. Those whom we mention
are the ones whose specific contributions have come most readily to mind,
and it is inevitable that in the period of over twenty years in which we have
been engaged in writing this work, some names will have escaped our
memories. For a variety of different kinds of assistance we thank Nikos
Batakis, Klaus Bichteler, Raoul Bott, Nick Buchdahl, Subrahmanyan
Chandrasekhar, Jiirgen Ehlers, Leon Ehrenpreis, Robert Geroch, Stephen
Hawking, Alan Held, Nigel Hitchin, Jim Isenberg, Ben Jeffryes, Saunders
Mac Lane, Ted Newman, Don Page, Felix Pirani, Ivor Robinson, Ray
Sachs, Engelbert Schiicking, William Shaw, Takeshi Shirafuji, Peter
Szekeres, Paul Tod, Nick Woodhouse, and particularly, Dennis Sciama for
his continued and unfailing encouragement. Our thanks go also to Markus
Fierz for a remark leading to the footnote on p. 321. Especially warm
thanks go to Judith Daniels for her encouragement and detailed criticisms
of the manuscript when the writing was going through a difficult period. We
are also greatly indebted to Tsou Sheung Tsun for her caring assistance
with the references and related matters. Finally, to those people whose
contributions we can no longer quite recall we offer both our thanks and
our apologies.

Roger Penrose
1984 Wolfgang Rindler
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1
The geometry of world-vectors and
spin-vectors

1.1 Minkowski vector space

In this chapter we are concerned with geometry relating to the space of
world-vectors. This space is called Minkowski vector space. It consists of
the set of ‘position vectors’ in the space—time of special relativity, originat-
ing from an arbitrarily chosen origin-event. In the curved space—time of
general relativity, Minkowski vector spaces occur as the tangent spaces
of space-time points (events). Other examples are the space spanned by
four-velocities and by four-momenta.

A Minkowski vector space is a four-dimensional vector space V over
the field R of real numbers, V being endowed with an orientation, a
(bilinear) inner product of signature (+ — — —), and a time-orientation.
(The precise meanings of these terms will be given shortly.) Thus, as for any
vector space, we have operations of addition, and multiplication by scalars,
satisfying

U+V=V+U U+(V+W)=(U+V)+ W,
aU+ V)y=aU+aV, (a+b)U=aU+ bU,
abl)=(ab)U, 1\U=U, OU=0V=:0 (1.1.1)
for all U, ¥, WeV, g, beR. 0 is the neutral element of addition. As is usual,
we write — U for (— 1)U, and we adopt the usual conventions about
brackets and minus signs, e.g., U+ V— W=(U+ V) +(— W), etc.

The four-dimensionality of ¥V is equivalent to the existence of a basis
consisting of four linearly independent vectors ¢, x, y, ze V. That is to
say, any Ue V is uniquely expressible in the form '

U=U%+U'x+U%»+ U3z (1.1.2)
with the coordinates U°, U', U%, U3€R; and only 0 has all coordinates
zero. Any other basis for V must also have four elements, and any set of
four linearly independent elements of V constitutes a basis. We often
refer to a basis for V as a tetrad, and often denote a tetrad (¢, x, y, z) by
&;, where

1=8,,x=¢8,,y=8,,2=§,. (1.1.3)

1



2 1. Geometry of world- and spin-vectors

Then (1.1.2) becomes

U=U%,+U'g, +U%,+U%,=Ulg,. (1.1.4)
Here we are using the Einstein summation convention, as we shall hence-
forth: it implies a summation whenever a numerical index occurs twice in a
term, once up, once down. Bold-face upright lower-case latin indices
a,i,a,,a ,d,etc, will always be understood to range over the four values
0, 1,2,3. Later we shall also use bold-face upright capital latin letters
ALA, A, A, etc., for numerical indices which will range only over the
two values 0, 1. Again the summation convention will apply.

‘Consider two bases for V, say (g,.£,.8,.8;) and (£,.8;.8;.8;).
Note that we use the ‘marked index’ notation, in which indices rather than
kernel letters of different bases, etc., carry the distinguishing marks (hats,
etc.). And indices like a, &, A, etc., are as unrelated numerically as a, b, c. The
reader may feel at first that this notation is unaesthetic but it pays to get
used to it; its advantages will becomes apparent later. Now, each vector
g, of the first basis will be a linear combination of the vectors g; of the
second: ) ) )

£=9.8,+9/8: +9,'8, +9°8; .

= g"gi. (1.1.5)
The 16 numbers g,j form a (4 x 4) real non-singular matrix. Thus det (g,j)
is non-zero. If it is positive, we say that the tetrads g, and g; have the same
orientation; if negative, the tetrads are said to have opposite orientation.
Note that the relation of ‘having the same orientation’ is an equivalence
relation. For if g; = g; g,, then (g;) and (g ’) are invers¢ matrices, so their
determinants have the same sign; if g, = g, g‘ andg; = g; ig. ;» then the matrix
) is the product of (g, ‘) with (g;‘) and so has positive determinant if both
the others have. Thus the tetrads fall into two disjoint equivalence classes.
Let us call the tetrads of one class proper tetrads and those of the other

class improper tetrads. It is this selection that gives V its orientation.

The inner product operation on ¥V assigns to any pair U, ¥ of V a real
number, denoted, by U- V, such that

UV=V-U (@U)V=aUYV), (U+V)yW=UW+V-W, (11.6)

i.e,, the operation is symmetric and bilinear. We also require the inner

product to have signature (+ — — —). This means that there exists a
tetrad (¢, x, y, 2) such that
tt=1 xx=py=zz=-1 (1.1.7)
tx=ty=tz=xy=x3=yz=0 (1.1.8)

If we denote this tetrad by g, according to the scheme (1.1.3), then we can



1.1 Minkowski vector space 3

rewrite (1.1.7) and (1.1.8) succinctly as
8,8 ="y (1.1.9)
where the matrix (n,,) is given by

1 0 0 0
0 -1 0 0
Q 0 -1 0
0 0 0 -1
(The raised-index version n* will be required later for notational consisten-
cy.) We shall call a tetrad satisfying (1.1.9) a Minkowski tetrad. For a
given vector space over the real numbers, it is well known (Sylvester’s
‘inertia of signature’ theorem) that for all orthogonal tetrads (or ‘ennuples’
in the n-dimensional case), i.e., those satisfying (1.1.8), the number of
positive self-products (1.1.7) is invariant.

Given any Minkowski tetrad g,, we can, in accordance with (1.1.4),
represent any vector UeV by its corresponding Minkowski coordinates
U'; then the inner product takes the form

U-V=(U'g)(Vg)=U'Vig, g)
= UIVJ,,lj
=UY° - U'V' - U2V2 - U3V3. (1.1.11)
Note that U-g, = U'n,;. Thus,
U=Uwg, U'=-Ug, U= ~-Uwg, U=-Ug, (1112
A particular case of inner product is the Lorentz norm
Ul =U-U= U'U‘nll =U% —(U")? —(U»* - (U¥»% (1.1.13)
We may remark that the inner product can be defined in terms of the
Lorentz norm by
vv=gllu+v|-ul-|v|} (1.114)
The vector UeV is called
timelikeif [JU|>0

() = (") = (1.1.10)

spacelike if [|[U] <0 (1.1.15)

null if |U| =o,
In terms of its Minkowski coordinates, U is causal (i.e., timelike or null) if
(U°P 2 (U + (U + (U, (1.L.16)

with equality holding if Uis null. If each of Uand ¥ is causal, then applying
in succession (1.1.16) and the Schwarz inequality, we obtain
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|U°V°| > {(Un)z +(U2)2 +(U3)2}*{(V')2 +(V2)2 +(V3)z}i
= UW + U4+ UYS, (1.1.17)

Hence unless U and ¥ are both null and proportional to one another, or
unless one of them is zero (the only cases in which both inequalities reduce
to equalities), then by (1.1.11), the sign of U- V is the same as the sign of

U°V°. Thus, in particular, no two non-zero causal vectors can be
orthogonal unless they are null and proportional.

As a consequence the causal vectors fall into two disjoint classes, such
that the inner product of any two non-proportional members of the same
classes is positive while the inner product of non-proportional members of
different classes is negative. These two classes are distinguished according
to the sign of U®, the class for which U is positive being the class to which
the timelike tetrad vector ¢t = g, belongs. The time-orientation of V con-
sists in calling future-pointing the elements of one of these classes, and
past-pointing the elements of the other. We often call a future-pointing
timelike [null, causal] vector simply a future-timelike [-null, -causal]
vector. If ¢ is a future-timelike vector, then the Minkowski tetrad (¢, x, y, 2)
is called orthochronous. When referred to an orthochronous Minkowski
tetrad, the future-causal vectors are simply those for which U° > 0. The
zero vector, though null, is neither future-null nor past-null. The negative
of any future-causal vector is past-causal.

The space-orientation of V consists in assigning ‘right-handedness’ or
‘left-handedness’ to the three spacelike vectors of each Minkowski tetrad.
This can be done in terms of the orientation and time-orientation of V.
Thus the triad (x,y, z) is called right-handed if the Minkowski tetrad
(¢, x,y, 2) is both proper and orthochronous, or neither. Otherwise the
triad (x,y, 2) is left-handed. A Minkowski tetrad which is both proper
and orthochronous is called restricted. Any two of the orientation, time-
orientation, and space-orientation of V determine the third, and if any
two are reversed, the third must remain unchanged. When making these
choices in the space—time we inhabit, it may be preferable to begin by
choosing a triad (x, y, z) and calling it right- or left-handed according
to that well-known criterion which physicists use and which is based on
the structure of the hand with which most people write.* Similarly statistic-
al physics determines a unigue future sense.

* In view of the observed non-invariance of weak interactions under space-reflection
(P) and of K°-decay under combined space-reflection and particle-antiparticle
interchange (CP) it is now possible to specify the space-orientation of physical space-
time independently of such cultural or physiological considerations: ¢f. Lee and
Yang (1956). Wu, Ambler, Hayward Hoppes and Hudson (1957), Lee, Ochme and

Yang (1957), Christenson, Cronin, Fitch and Turlay (1964), Wu and Yang (1964);
also Gardner (1967) for a popular account.
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Minkowski space—time

As we mentioned earlier, Minkowski vector space V can be regarded as
the space of position vectors, relative to an arbitrarily chosen origin, of the
points (events) which constitute Minkowski space—time M. That space—
time is the stage for special relativity theory. None of its points is preferred,
and specifically it has no preferred origin: it is invariant under translations,
i.e., itis an affine space. The relation between M and V can be characterized
by the map

vee: M x M-V (1.1.18)
for which
vec(P, Q) + vec(Q, R) = vec(P, R), (1.1.19)

whence vec(P,P)=0 and vec(P Q)= —vec(Q, P). We can regard
vec(P, Q) as the position vector PQe V of Q relative to P, where P, Qe M.
Evidently V induces by this map a norm, here called the squared interval
®, on any pair of points P, Qe M:

NP, Q):= | vec(P, Q)| (1.1.20)

The standard coordinatization of M, M « R*, where R* is the space of
quadruples of real numbers, conslsts of a choice of origin OeM and a
choice of Minkowski tetrad g, = OQ, for Q,, Q,,Q,, ;M. Then the
coordinates PO P!, P2, P3 of f any point PeM are the coordinates of the
vector OP relative to 8. 1e. 0P = P‘gI From (1.1.19) we find, by putting
O for Q, the following coordinates of PR relative to &:

(PR)i =R' - P, (1.1.21)

clearly independently of the choice of origin. Substituting this and (1.1.20)
into (1.1.13) yields

P, Q) =(Q° — PO — (Q' — P')* —(Q* — P} —(Q* - P*% (1.1.22)

A linear self-transformation of ¥ which preserves the Lorentz norm -
and therefore, by (1.1.14), also the inner product—is called an (active)
Lorentz transformation. If such a transformation preserves both the
orientation and time-orientation of V, it is called a restricted Lorentz
transformation. Clearly the [restricted | Lorentz transformations form a
group, and this group is called the [restricted] Lorentz group. Similarly
a self-transformation of M which preserves the squared interval (no
linearity assumption being here needed) is called an (active) Poincaré
transformation. Any such transformation induces a Lorentz transforma-
tion on V, and can accordingly also be classified as restricted or not. Again,
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the restricted Poincaré transformations clearly form a group.*

Any physical experiment going on in the Minkowski space—time of our
experience may be subjected to a Poincaré transformation — i.e., rotated
in space, translated in space and time, and given a uniform motion —
without altering its intrinsic outcome. This is the basis of special relativity
theory, and it can be stated without reference to coordinates or to the
other laws of physics.

Coordinate change

If not further qualified, Lorentz and Poincaré transformations in this
book will be understood to be active. But it is sometimes useful to consider
‘passive’ Lorentz [and Poincaré] transformations. These are transforma-
tions of the coordinate space R*, i.e. re-coordinatizations of V [or M].
Any Minkowski tetrad g, in V [or tetrad g, and origin O in M] defines a
quadruple of coordinates U’ for each U of V [or U = 0P of M], with U=
U'g,. A change in this reference tetrad, g,—g; in V [or of tetrad and origin
in M] induces a change in the coordinates for V[M]. The resulting
correspondence

G: U U (1.1.23)

[or Ut Ut + K with K const.]
is called a passive Lorentz [ Poincaré] transformation. 1t is called restricted
if it can be generated by two restricted Minkowski tetrads g, and g;. For
the sake of conciseness, we shall now concentrate on Lorentz transforma-

tions, obvious generalizations being applicable to Poincaré transforma-
tions.

It the two reference tetrads are related by
' 8 =98 (1.1.24)
then
U=Ug=U's=U's;,
and thus the passive transformation (1.1.23) is given explicitly by
Ui= Uy} (1.1.25)

which is evidently linear. It is fully characterized by the matrix g\
It is often convenient, though slightly misleading, to describe even an

Note that we use the term *Lorentz group’ here only for the six-parameter homogeneous
groupon Minkowski vector space, while referring to the corresponding ten-parameter
inhomogeneous group on Minkowski space-time as the Poincaré group.
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Fig. 1-1. An active Poincaré transformation sends the world vector Uat O to a world
vector ¥ at O. If it also sends the tetrad g, at O to g; at O, then the coordinates U,
of U in g,, are the same as those, V', of Vin g, (ie. U* = V'). Hence the (reversed)
passive transformation induced by {g;at 0} {g, at O} takes the original coordinates
U i(= V9 of U to the original coordinates V' of V.

active Lorentz transformation by means of coordinates. (It is slightly
misleading because an active Lorentz transformation exists independently
of all coordinates, whereas a passive Lorentz transformation does not.)
Thus, for a given active Lorentz transformation L: U V, we can refer
both U and its image V to one (arbitrary) Minkowski tetrad g;, whose
pre-image under L, let us say, is g, as in (1.1.24). Since by the assumed
linearity of L the expression of ¥ in terms of g; must be identical with the
expression of Uin terms of g,, we then have, from (1.1.25), (see also Fig. 1-1)

Ui =vig, (1.1.26)
where, in violation of the general rule, we here for once understand sum-

mation over the unlike index pair j and 1. We therefore have the following
explicit form of the transformation,

vi= UL, (1.1.27)

where

(L =(gH " (1.1.28)
Thus the active Lorentz transformation L that carries g, into g; is formally
equivalent, in its effect on the coordinates of a vector, to the passive
Lorentz transformation G™' induced by the passage from g; to g, as
reference tetrad. )

Il L is a restricted Lorentz transformation, it clearly carries a restricted
Minkowski tetrad into a restricted Minkowski tetrad, and thus the corres-
ponding passive transformation G is restricted also. If, conversely, G is
restricted, suppose it is generated by the restricted tetrads g, and g; ; then
the corresponding L preserves norms, products, and orientation since,
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in fact, it preserves coordinates, and thus L is restricted. Now in order for
L to preserve inner products we require — from (1.1.11) and (1.1.27), drop-
ping hats -

v1uLk‘L,l =Ny (1.1.29)

Regarding this as a matrix equation, we see that det(L})= +1. The
condition for L to be restricted is then seen to be

det(L)=1, L,°>0. (1.1.30)

Because of (1.1.28), the same conditions apply to the matrix of a passive
restricted Lorentz transformation. They can, of course, also be derived
directly from the definitions:

ngi'ei =my. det@gh)=1, g;°>0. (1.1.31)

1.2 Null directions and spin transformations

In §1.1 the conventional representation of a world-vector U in terms of
Minkowski coordinates was considered. Now we examine another way of
representing world-vectors by coordinates. In particular, we shall obtain
a coordinatization of the null cone (i.e., the set of null vectors) in terms of
complex numbers. This will lead us to the concept of a spin-vector.

To avoid unnecessary' indices, we write T, X, Y, Z for the coordinates
U U', U2 U? of U with respect to a restricted Minkowski tetrad
tx»2:

U=Tt+Xx+Yy+ 2z (1.2.1)
For null vectors the coordinates satisfy
T?-X*-Y2-22=0. (1.2.2)

Often we wish to consider just the null directions, say at the origin O
of (Minkowski) space-time. Note that + U will be considered to have
unequal (namely, opposite) directions. The abstract space whose elements
are the future [past] null directions we call & *{% ~]. These two spaces
can be represented in any given coordinate system (T, X, Y, Z) by the
intersections S* [S™] of the future [past] null cone (1.2.2) with the
hyperplanes T=1 [T = —l]. In the Euclidean (X, Y, Z)-space T =1
[T = —1],8* [S™]is a sphere with equation*

X4+ +22=1, ' (1.2.3)
(See Fig. 1-2) Of course, the direction of any vector (1.2.1) through O

. We here reserve lower case letters x, y, z for coordinateson S* and S~



