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Preface

The field of hormone action is undoubtedly one of the fastest growing
areas of biological science. A rough assessment of the rate of growth of this
field as determined from an evaluation of journal articles and programs of
national meetings leads us to the surprising conclusion that an approximate
tenfold expansion of this field has occurred over the last decade. Research
in hormone action not only has grown into a dominant effort in endo-
crinology and reproductive biology, but also has captured a large share of
the more general disciplines of biochemistry, cell biology, and molecular
biology. This development has occurred because of the dynamic aspects of
the field and the increasing interest inherent to the new discipline of regula-
tory biology.

The creation of a series of volumes summarizing the advances in the field
of hormone action has been a major undertaking. Nevertheless, the invest-
ment of time required for this project on the part of the contributors and
editors appears to be justified since the compilation of a series of volumes
on receptors and hormone action should prove useful to those interested in
studying the regulatory biology of the eukaryotic cell. The articles
contained in these books are oriented toward a description of basic
methodologies and model systems used in the exploration of the molecular
bases of hormone action and are aimed at a broad spectrum of readers
including those who have not yet worked in the field as well as those who
have considerable expertise in one or another aspect of hormone action. In
the initial three volumes we therefore compiled articles that present not only
a rather extensive description of hormone receptors and their properties, but
also basic aspects of structure and function of chromatin and membranes,
the sites at which hormones and their receptors exert their action. The
receptors discussed include soluble cytoplasmic and nuclear receptors for
steroid hormones and vitamins, membrane-bound receptors for protein hor-
mones and biogenic amines, and nuclear receptors for thyroid hormones. It
seemed appropriate to cover receptor types, in view of the large body of
literature accumulated recently dealing with the various functions of these
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Preface XVi

fascinating but elusive molecules. Thus, while steroid hormone receptors
have been isolated and purified, this has not yet been possible for other
types of hormone receptors, a fact that clearly highlights a hiatus in our
knowledge and demarcates an area for intense future work. We hope that
the background and recent advancements presented here will stimulate
further experimentation. Future volumes will deal more with the detailed
molecular and biochemical processes regulated by these hormones.

Certain omissions have inevitably occurred in the compilation of these
initial volumes. Some are due to the fact that certain authors were over-
committed or unable to meet the present deadlines. Other omissions were
due to editorial oversight. Nevertheless, we hope that the completion of
future volumes will permit this series to stand as a reference of the complete
works of the major laboratories working in the field of receptors and hor-
mone action.

Bert W. O’Malley
Lutz Birmbaumer
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I. INTRODUCTION

The differential expression of eukaryotic genes is a widely recognized
phenomenon. However, the molecular reactions which control differential
expression are still unknown. It is likely that specific nucleotide sequence
arrangements are involved in the process, just as prokaryotic DNA
sequences are involved in the regulation of adjacent structural genes (Gil-
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2 Robert C. Angerer and Barbara R. Hough-Evans

bert and Maxam, 1973). In the laboratories of Eric Davidson and Roy Brit-
ten, we are interested in gene control and, therefore, in the arrangement of
nucleotide sequences in the DNA of higher organisms. According to a
model proposed by Britten and Davidson (1969) and Davidson and Britten
(1973), groups of structural genes are transcribed coordinately in response
to activators which recognize the particular repetitive DNA sequences
adjacent to each protein coding sequence. Other aspects of genome function
might also require signals which involve repetitive nucleotide sequences. In
order to understand the structural relationships which may mediate
transcriptional control, the sequence content and organization of eukaryotic
DNA has been studied in detail.

The discovery that eukaryotic DNA’s include many nucleotide se-
quences which are repeated a number of times in the genome was made in
the 1960’s (Bolton er al., 1966; Waring and Britten, 1966; Britten and
Kohne, 1967, 1968; Britten, 1969). The existence of these repeated
sequences was demonstrated in DNA reassociation experiments. A fraction
of each eukaryotic genome examined was found after melting to reanneal at
a rate greater than that predicted from the size of the genome. In these
studies DNA was sheared to short fragments, denatured, and allowed to
reassociate under conditions which establish a criterion for base pairing
fidelity. A standard incubation condition or criterion is 60°C and 0.18 M
sodium ion. The extent of incubation is quantitated in units of C,t, the
product of initial DNA concentration (nucleotide molarity) and time in
seconds. The extent of reassociation, i.e. the fraction of fragments bearing
duplex regions, can be measured by passing the samples over hydroxy-
apatite columns at 60°C. Double-stranded DNA binds, while purely single-
stranded fragments pass through the column. The results of such analyses
can be plotted as the percent of DNA fragments bound as a function of Cjt.
The upper curve in Fig. 1 is a Cy curve for calf DNA (Britten and Smith,
1970).

The reassociation of any DNA in which each sequence is present in a
single_ copy per haploid genome (as, for example, in E. coli) can be
described by a second-order rate equation (Wetmur and Davidson, 1968;
Britten and Kohne, 1968). For eukaryotic DNA’s which contain repeated
sequences the overall reassociation curve is described by the sum of several
second-order components (Britten ez al., 1974). Each component includes
sets of sequences which are present in approximately the same number of
copies. Within each set the nucleotide sequences are similar enough to form
stable duplexes at the criterion of incubation. Such a set of sequences has
been termed a *““family” of repetitive sequences. The repetition frequency of
the families in a component can be determined from the second-order rate
constant for that component. The nucleotide sequence complexity, or
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Fig. 1. The demonstration of fine-scale intermixing of repeated and nonrepeated sequences
in the calf genome. The upper curve shows the reassociation of calf DNA fragments sheared to
about 400 nucleotides. Samples were incubated at 60°C in 0.12 M phosphate buffer and
assayed by hydroxyapatite under the same conditions. The lower curve shows the reassociation
of a small quantity of labeled 4000 nucleotide long fragments with an excess of 400 nucleotide
long fragments. For the upper curve, data have been included from a number of other measure-
ments in order to give a more complete picture of calf DNA reassociation kinetics. From Brit-
ten and Smith (1970).

number of nucleotides of diverse sequence present in each component, is
calculated by multiplying the genome size (in nucleotide pairs) by the frac-
tion of the DNA which belongs to the component, and dividing by the
repetition frequency. The complexity of a component is the sum of the com-
plexities of all the families which make up that component. The physical
length in the genome of members of different families cannot be determined
from this analysis.

Repetitive components of a variety of frequencies have been demon-
strated by analysis of the reassociation kinetics of eukaryotic DNA’s.
In many DNA’s a small percentage of fragments binds to hydroxyapatite
after incubation to values of C, less than those required for interstrand
reassociation. Such fragments have been shown to contain foldback
or inverted repeat sequences (Wilson and Thomas, 1974). Intrastrand
reassociation of these sequences forms duplex regions which bind to
hydroxyapatite. The sequences appear to occur within or near both single
copy and repetitive sequences (Davidson et al., 1973; Schmid et al., 1975;
Deininger and Schmid, 1976) (see Section II). The function of these
sequences is unknown at present.

DNA sequences which reassociate very rapidly but not instantaneously
are generally satellite DNA components. Satellites typically consist of short
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nucleotide sequences that are repeated as many as a million times in tandem
(Southern, 1970; Peacock et al., 1973). Because of their clustered arrange-
ment and simple nucleotide sequence composition, they frequently, but not
always, have a buoyant density in cesium chloride gradients which is dif-
ferent from that of the rest of the DNA. As far as can be determined,
satellite sequences are not transcribed into RNA (Brutlag and Peacock,
1975). They exist in large blocks on chromosomes, in particular at the cen-
tromeres (Pardue and Gall, 1970), and comprise part of the constitutive
heterochromatin (Brutlag and Peacock, 1975). The function of these simple,
very highly repeated sequences may be related to chromosomal events, i.e.
mitosis or meiosis, rather than gene expression or its regulation (Goldring ez
al., 1975). In view of the low nucleotide sequence complexity, and therefore
low information content of the satellite sequences, it is doubtful that they
could be involved in specific gene control interactions.

Sequences repeated from ten to a few thousand times (the moderately
repetitive or middle repetitive families) have been found in most eukaryotic
genomes. A fraction of this class of sequences is composed of identified
repetitive genes, including those for ribosomal RNA'’s (Birnstiel ez al., 1969)
and for histones (Kedes ez al., 1975). The repeats of these genes are
arranged tandemly in large blocks, and at least in the case of the ribosomal
genes they are separated by repetitive spacer sequences. The function of the
majority of repetitive sequences is not clear. However, specific sets of
repetitive sequences are transcribed in different tissues and at different
stages of development (e.g., McCarthy and Hoyer, 1964; Davidson et al.,
1968). Repetitive sequences are expressed in heterogeneous nuclear RNA
(HnRNA) (Holmes and Bonner, 1974; Smith ef al., 1974) and comprise a
minor fraction of cytoplasmic messenger RNA. The arrangement in the
DNA of these middle repetitive sequences has been determined in the inter-
spersion studies to be described below.

Nonrepeated nucleotide sequences reassociate at a rate inversely propor-
tional to the size of the genome. The complexity of these single copy
sequences is always much higher than that of repetitive components, and
represents a vast quantity of potential genetic information. For example, the
single copy DNA of calf (Fig. 1) has a complexity of 1.9 x 10° nucleotide
pairs, enough to code for about a million average-sized proteins. Single
copy sequences are the templates from which most messenger RNA’s are
transcribed. This has been shown in experiments with total polysomal
messenger RNA (Goldberg ez al., 1973; Klein et al., 1974) and in investiga-
tions of the messenger RNA’s which code for specific proteins (Suzuki et
al., 1972; Bishop and Rosbash, 1973; Harris et al., 1973). We do not know
how much of the single copy DNA of an organism actually codes for pro-
teins. Measurements of the sequence complexity of sea urchin messenger



