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Preface

In many ways classical mechanics serves as the bedrock of physical science,
yet surprisingly, it has crucial features that are not widely known. Many
people know something about ‘chaos theory’—how mathematical models of
certain deterministic classical systems fail to predict the evolution of those
systems in a practical sense. If they’re interested in history, they also know
that much of chaos theory was understood by mathematicians almost a
century before it was popularized by way of computer models in the last
third of the 20th century. But there is a deeper, more interesting story that
is not well known outside a circle of experts, and the aim of this book is to
tell this story to a wider audience.

The story in a nutshell is this: Right from the start, after enunciating
his laws of mechanics and gravitation, Isaac Newton ran into difficulties
using those laws to describe the motion of three bodies moving under mu-
tual gravitational attraction (the so-called ‘three body problem’). For the
next two centuries, these difficulties resisted solution, as the best minds in
mathematics and physics concentrated on solving other, increasingly com-
plex model systems in classical mechanics (in the abstract mathematical
setting, to ‘solve’ a system means showing that its trajectories move lin-
early on so-called ‘invariant tori’). But toward the end of the 19th century,
using his own new methods, Henri Poincaré confronted Newton's difficul-
ties head-on and discovered an astonishing form of ‘unsolvability,” or chaos,
at the heart of the three body problem. This in turn led to a paradox.
According to Poincaré and his followers, most classical systems should be
chaotic; yet observers and experimentalists did not see this in nature, and
mathematicians working with model systems could not (quite) prove it to
be true either. The paradox persisted for more than a half-century, until
Andrey Kolmogorov unraveled it by announcing that, against all expec-
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tation, many of the invariant tori from solvable systems remain intact in
chaotic systems. These tori make most systems into hybrids—they are a
strange, fractal mixture of regularity and chaos. This stunning announce-
ment was later affirmed with rigorous mathematical proofs by Vladimir
Arnold and Jiirgen Moser, and the names Kolmogorov, Arnold, and Moser
were combined in the acronym KAM, by which the theory has since been
known. Thus the true picture of classical mechanics—often thought to have
been essentially sketched in the 17th century—was not complete until the
latter part of the 20th century. And although the mathematical theory is
indeed mostly complete, certain applications to problems in physics (espe-
cially in celestial and statistical mechanics) have been developed only with
great difficulty, and some remain controversial and uncertain even today.

To compare the practical impact of KAM theory to that of relativity or
quantum theory is not realistic (to be frank, the practical impact of KAM
theory has been limited). Yet in the history of ideas and the philosophy of
science, it is not a stretch to rank KAM theory alongside the revolutions in
modern physics. But KAM theory—and the paradox that precipitated it—
also had the misfortune of playing out over roughly the same interval during
which the revolutions of modern physics took place. Not surprisingly, in
that period, physicists abandoned classical mechanics to the few hardy
mathematicians who remained interested in it. The physicists returned
with wondrous stories of their exploits in quantum mechanics, relativity,
and nuclear physics. The time has come for mathematicians to tell their
tales from this period in a broad setting, too.

When I asked specialists why none of them had yet written a broad
overview of KAM theory, they invariably answered that, with several dif-
ferent ‘schools’ having descended from the original founders of the theory,
it would be awkward for any one individual to take up that task. In other
words, KAM theory is still slightly controversial, and the experts are un-
derstandably touchy about each other’s contributions. Since I don’t belong
to any particular school, I am prepared to step into the breach, or break
the ice. I hope the experts will follow me, not with pitchforks, but with
first-hand accounts, corrections, and further detail.

H.S. Dumas, December 2013
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