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Foreword

The last 30 years have witnessed the prevalent use of — “quantum
heterostructures” — in microelectronics (Field Effect Transistor) and
optoelectronics (Quantum Well Lasers, Quantum Cascade Lasers).
Advances in the area of nanostructures require a good knowledge
of elementary quantum mechanics and simultaneously a feeling of
how a certain electronic function is best realised (the “bandgap engi-
neering” ). Yet, the usual teaching of quantum mechanics focuses on
general principles and the applications that are proposed to the stu-
dents to understand this formal apparatus often fall within the field
of atomic physics. The theories of quantum measurements, the deco-
herence, are also highlighted and for good reasons, as the measure-
ment theory has recently been the topics of major discoveries. To
be checked it requires the simpler possible quantum objects: ultra-
diluted two-level systems as realised in atomic physics. However,
these questions (time evolution of systems with very few degree of
freedom) are irrelevant to the understanding of the electron states
in semiconductor nanostructures where one deals most often with
extended states perturbed by static defects or inelastic interactions
with phonons.

The book is written for students and engineers who have already
been exposed to elementary quantum mechanics and statistical
physics. That is why our book presents an applied version of quantum
mechanics that is very short on general physical questions but has the
target of predicting the electron whereabouts in existing semiconduc-
tor heterostructures. To give an example, we note that many of the
nanostructures display an effective cylindrical symmetry around an
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axis. That is why we shall devote very little space below to the spher-
ically symmetric problems, so prevalent in atomic physics. A great
deal of attention will be given to the scattering of extended states
while usual courses emphasize discrete electronic states and their
coupling to external fields. Our aim is to bring our readers to answer
basic but relevant questions for devices; “where are the electrons in
the structures, how do their energy levels vary when this or that
parameter changes, what is the order of magnitude of the coupling
between the electrons and the static defects or the phonons?”.

While computers allow a numerical solution of a large number
of problems in nanostructures, we believe it remains very important
that the researchers/engineers working on these materials can ana-
Iytically handle simplified cases.

To this end, we propose more than 50 exercises/problems (with
solutions) where the readers will train him/herself to analytically
approach actual situations. We have created most of these exercises
(or we believe to have done so). Some of them have been used in
different Master programmes at Ecole Normale Supérieure (Inter-
national Centre for Fundamental Physics), Pierre et Marie Curie
(Sciences des Matériaux et des Nano-objets) and Paris Diderot Uni-
versities (Dispositifs Quantiques) and in different Universities abroad
(TU Wien, IIS Tokyo. HKUST). We have retained a handful of clas-
sic exercises (for instance, the variational estimate of the hydrogen
binding energy using a Gaussian trial function [1]) because of their
pedagogical values despite the fact that some of them can be found
on the Web or in specific textbooks.

The exercises/problems can be quite short with the aim of train-
ing the reader to do the calculations automatically or can be long
if a certain question needs to be discussed more thoroughly. The
set of exercises can be split roughly into five parts: (a) basic quan-
tum mechanics (1)-(16); (b) energy levels in 1D structures (17)
(25): (c¢) (static)perturbation theory (26)-(32): (d) time-dependent
problems (33)-(44): (e) scattering (45) (54). Problems involving one-
dimensional (1D) localised states are discussed more thoroughly than
usually found in textbooks because a (huge) number of actual het-
erostructures display 1D bound states.
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