



Quantum States and Scattering in Semiconductor Nanostructures

This book is an introduction to quantum states and of their scattering in semiconductor nanostructures. Written with exercises and detailed solutions, it is designed to enable readers to start modelling actual electron states and scattering in nanostructures. It first looks at practical aspects of quantum states and emphasises the variational and perturbation approaches. Following this there is analysis of quasi two-dimensional materials, including discussion of the eigenstates of nanostructures, scattering mechanisms and their numerical results.

Focussing on practical applications, this book moves away from standard discourse on theory and provides students of physics, nanotechnology and materials science with the opportunity to fully understand the electronic properties of nanostructures.

U

Carosella

0

×

100

Quantum States and Scattering in Semiconductor Nanostructures

Camille Ndebeka-Bandou

Institute for Quantum Electronics, ETH Zürich, Switzerland

Francesca Carosella Gérald Bastard

Laboratoire Pierre Aigrain, Ecole Normale Supérieure, France

Published by

World Scientific Publishing Europe Ltd.

57 Shelton Street, Covent Garden, London WC2H 9HE

Head office: 5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

Library of Congress Cataloging-in-Publication Data

Names: Ndebeka-Bandou, Camille, 1987- | Carosella, Francesca, 1976- |

Bastard, Gérald.

Title: Quantum states and scattering in semiconductor nanostructures /

by Camille Ndebeka-Bandou (ETH Zürich, Switzerland), Francesca Carosella

(Ecole Normale Supérieure, France), Gérald Bastard (Ecole Normale Supérieure, France). Description: New Jersey: World Scientific, 2017. | Series: Advanced textbooks in physics

Identifiers: LCCN 2016056720 ISBN 9781786343017 (hc : alk. paper)

ISBN 9781786343024 (pbk : alk. paper)

Subjects: LCSH: Nanoelectronics. | Semiconductors. | Quantum systems. | Quantum scattering.

Classification: LCC TK7874.84 .N44 2017 | DDC 537.6/226--dc23

LC record available at https://lccn.loc.gov/2016056720

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Copyright © 2018 by World Scientific Publishing Europe Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

Desk Editors: V. Vishnu Mohan/Mary Simpson

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore

Quantum States and Scattering in Semiconductor Nanostructures

Advanced Textbooks in Physics

ISSN: 2059-7711

Published

Trapped Charged Particles: A Graduate Textbook with Problems and Solutions edited by Richard C Thompson, Niels Madsen & Martina Knoop

Studying Distant Galaxies: A Handbook of Methods and Analyses by François Hammer, Mathieu Puech, Hector Flores & Myriam Rodrigues

An Introduction to Particle Dark Matter by Stefano Profumo

Quantum States and Scattering in Semiconductor Nanostructures by Camille Ndebeka-Bandou, Francesca Carosella & Gérald Bastard

Forthcoming

An Introduction to String Theory and D-Brane Dynamics: With Problems and Solutions (3rd Edition)

by Richard J Szabo

Foreword

The last 30 years have witnessed the prevalent use of — "quantum heterostructures" — in microelectronics (Field Effect Transistor) and optoelectronics (Quantum Well Lasers, Quantum Cascade Lasers). Advances in the area of nanostructures require a good knowledge of elementary quantum mechanics and simultaneously a feeling of how a certain electronic function is best realised (the "bandgap engineering"). Yet, the usual teaching of quantum mechanics focuses on general principles and the applications that are proposed to the students to understand this formal apparatus often fall within the field of atomic physics. The theories of quantum measurements, the decoherence, are also highlighted and for good reasons, as the measurement theory has recently been the topics of major discoveries. To be checked it requires the simpler possible quantum objects: ultradiluted two-level systems as realised in atomic physics. However, these questions (time evolution of systems with very few degree of freedom) are irrelevant to the understanding of the electron states in semiconductor nanostructures where one deals most often with extended states perturbed by static defects or inelastic interactions with phonons.

The book is written for students and engineers who have already been exposed to elementary quantum mechanics and statistical physics. That is why our book presents an applied version of quantum mechanics that is very short on general physical questions but has the target of predicting the electron whereabouts in existing semiconductor heterostructures. To give an example, we note that many of the nanostructures display an effective cylindrical symmetry around an axis. That is why we shall devote very little space below to the spherically symmetric problems, so prevalent in atomic physics. A great deal of attention will be given to the scattering of extended states while usual courses emphasize discrete electronic states and their coupling to external fields. Our aim is to bring our readers to answer basic but relevant questions for devices; "where are the electrons in the structures, how do their energy levels vary when this or that parameter changes, what is the order of magnitude of the coupling between the electrons and the static defects or the phonons?".

While computers allow a numerical solution of a large number of problems in nanostructures, we believe it remains very important that the researchers/engineers working on these materials can analytically handle simplified cases.

To this end, we propose more than 50 exercises/problems (with solutions) where the readers will train him/herself to analytically approach actual situations. We have created most of these exercises (or we believe to have done so). Some of them have been used in different Master programmes at École Normale Supérieure (International Centre for Fundamental Physics), Pierre et Marie Curie (Sciences des Matériaux et des Nano-objets) and Paris Diderot Universities (Dispositifs Quantiques) and in different Universities abroad (TU Wien, IIS Tokyo, HKUST). We have retained a handful of classic exercises (for instance, the variational estimate of the hydrogen binding energy using a Gaussian trial function [1]) because of their pedagogical values despite the fact that some of them can be found on the Web or in specific textbooks.

The exercises/problems can be quite short with the aim of training the reader to do the calculations automatically or can be long if a certain question needs to be discussed more thoroughly. The set of exercises can be split roughly into five parts: (a) basic quantum mechanics (1)–(16); (b) energy levels in 1D structures (17)–(25); (c) (static)perturbation theory (26)–(32); (d) time-dependent problems (33)–(44); (e) scattering (45)–(54). Problems involving one-dimensional (1D) localised states are discussed more thoroughly than usually found in textbooks because a (huge) number of actual heterostructures display 1D bound states.

Foreword

Throughout the years, discussions with colleagues have helped us to clarify many aspects of semiconductor heterostructures. We are much indebted to Prs K. Unterrainer, G. Strasser, J. Wang, L. Esaki, K. Hirakawa, Y. Arakawa, H. Sakaki, A. Wacker, C. Sirtori, A. Vasanelli, Y. Guldner, C. Delalande, Ph. Roussignol, J.M. Berroir, P. Voisin, M. Voos and, above all, R. Ferreira.

One of us (GB) would like to acknowledge the Technical University Vienna, the Institute of Industrial Science Tokyo and the Hong Kong University for Science and Technology for constant support all over the years. One of us (CNB) would like to acknowledge Prof. K. Hirakawa and Prof. J. Faist for their hospitality during her stay in Tokyo and Zurich.

Camille Ndebeka-Bandou^{a,b}, Francesca Carosella^a and Gérald Bastard^{a,c,d,e}

^aLaboratoire Pierre Aigrain École Normale Supérieure, France

^bETH Zürich, Switzerland

^cTechnical University Vienna, Austria

^dInstitute of Industrial Science University of Tokyo, Japan

^eHong Kong University of Science and Technology, Hong Kong

September 2016

此为试读,需要完整PDF请访问: www.ertongbook.com

About the Authors

Gérald Bastard was born in 1950 near Paris. Presently he is (emeritus) Directeur de Recherche at the CNRS (French National Council for Research) and he is the head of the Theory group at the Laboratoire Pierre Aigrain (LPA-ENS). He received his PhD degree in Physics in 1979 with a study about "Magneto — optical studies of zero gap $Hg_{1-x}Mn_x$ Te alloys". In 1981–1982 he worked as a postdoc at IBM (Yorktown Heights, USA) in L. Esaki's group and since then has studied electronic states in semiconductor nanostructures. Gérald Bastard has been Visiting Professor/Scientist at IBM, MPI (Stuggart, Germany), EPFL (Lausanne, Switzerland), University of Lecce (Italy), Institute of Industrial Science (Tokyo, Japan), TU Wien (Austria), HKUST (Hong Kong, China). He has written more than 200 papers in the scientific literature, several review articles and two books: Wave Mechanics Applied to Semiconductor Heterostructures, published in 1988 and, together with R. Ferreira, Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots in 2015.

Francesca Carosella is Associate Professor at Université Paris Diderot since 2008 and she performs research at the Laboratoire Pierre Aigrain (LPA, Ecole Normale Supérieure) within the Theory group. Dr. Carosella was born in 1976 in Italy. She graduated at the University of Bologna, (Italy) and obtained her PhD degree in Physics in 2005 at the University of Science and Technology of Lille (USTL) with a theoretical work about the transport properties of AlGaN/GaN heterostructure. At present her research interests are focussed on the theoretical study of the optical and electronic properties of semiconductor heterostructures; for instance, the scattering

contributions to the absorption spectrum lineshape and linewidth of disordered quantum cascade structures; the electronic properties of Dirac superlattices and of heterostructures with no-common anions.

Camille Ndebeka-Bandou is a Post-doctoral Researcher and Teaching Assistant at the Institute of Quantum Electronics of the Swiss Federal Institute of Technology (ETH Zürich) and she does her research in the Quantum Optoelectronics Group of Pr. Jérôme Faist. Dr. Ndebeka-Bandou was born in 1987 in Guadeloupe. She studied Physics in Paris (France), graduated at the Université Paris Diderot in 2011 and obtained her PhD degree in 2014 with a theoretical study of the electron states in disordered semiconductor heterostructures, notably the quantum cascade structures. Since 2014, she has carried out various research projects at ETH Zürich such as the theoretical investigation of the loss mechanisms in terahertz quantum cascade lasers, the ultra-strong coupling in metamaterial cavities and the theoretical study of the bulk states in disordered two-dimensional topological insulators.

Contents

Foreword				
Abo	ut the	Authors	ix	
Pai	rt I	Practical Quantum Mechanics	1	
I.1	Schrö	odinger Equation	3	
	I.1.1	Eigenvalues, eigenvector of linear operators	6	
	I.1.2	Adjoint operator	7	
	I.1.3	Hermitian operators: observables	8	
	I.1.4	Unitary operators	8	
	I.1.5	Projectors	9	
	I.1.6	Commuting operators	9	
	I.1.7	Two important examples of non-commuting		
		operators	13	
	I.1.8	Heisenberg inequalities	14	
	I.1.9	Spin	15	
	I.1.10	Spin-orbit coupling	16	
	I.1.11	Density of states	17	
		Identical particles and Pauli principle	20	
	I.1.13	Tensorial products	24	
I.2	Boun	nd and Extended States	27	
	I.2.1	Propagating and evanescent states	27	
	I.2.2	Probability current	30	

	1.2.3	Boundary conditions	31
	I.2.4	Bound states	39
	I.2.5	The problem of plane waves	48
	I.2.6	Schrödinger equation, time-dependent aspects	52
I.3	App	roximate Methods	57
	1.3.1	Variational method	57
	1.3.2	Perturbation theory	60
		I.3.2.1 Non-degenerate perturbation theory	62
		I.3.2.2 Degenerate perturbation theory \dots	67
	1.3.3	Time-dependent perturbation theory	70
		I.3.3.1 Static scatterers	71
		I.3.3.2 Time-dependent scattering	77
I.4	Land	lau Quantisation of Electron Motion in	
	Ideal	Semiconductor Bulks and Heterostructures	83
	I.4.1	Landau level degeneracy	88
	I.4.2	Perturbative estimates of δH_1 and δH_2	89
	1.4.3	Magnetic field-dependent density of states	91
	I.4.4	A tractable case of lifting of the k_y degeneracy: the	
		crossed E, B fields	93
Par	rt II	The Physics of Heterostructures	95
TT a	ъ	I I II I	0.5
11.1	Вас	kground on Heterostructures	97
II.2	Elec	ctrons States in Nanostructures	103
	II.2.1	The envelope function approximation	103
		II.2.1.1 Introduction	103
		II.2.1.2 Electronic states in bulk semiconductors $$	108
		II.2.1.3 Heterostructure states	115
	II.2.2	Multiple quantum wells: transfer matrix	
		method	120
		II.2.2.1 Multiple quantum wells	
		and superlattices	120

	II.2.2.2 Transfer matrix method	22
II.2	3 Double quantum wells	26
	II.2.3.1 Tight binding analysis	
	II.2.3.2 Symmetrical double quantum well 13	
II.2	4 Holes	
П.3 В€	yond the Ideal World 13	39
II.3	, , , , ,	
	times through rate equations	47
II.3	1	
	and inelastic processes	51
II.3	3 Analysis of the relaxation times	
	in rate equations	54
	II.3.3.1 Impurity form factor	55
	II.3.3.2 Phonon form factors and transition	
	rates	58
II.3.	4 Consequence of the Born approximation	
		69
	on the additivity of scattering frequencies 16	02
II.4 Sc	on the additivity of scattering frequencies 16 reening at the Semi-classical Approximation 16	
	reening at the Semi-classical Approximation 16	35
II.4.	reening at the Semi-classical Approximation 16 1 Case of a single subband occupation	65
II.4. II.4.	reening at the Semi-classical Approximation 16	66 71
II.4. II.4. II.4.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73
II.4. II.4. II.4. II.5 Re	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73
II.4. II.4. II.4. II.5 Re	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73
II.4. II.4. II.4. II.5 Re	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77 84 93
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77 84 93
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	65 66 71 73 77 77 84 93 93
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	65 66 71 73 77 77 84 93 93
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77 84 93 93 01 05
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77 84 93 93 01 05
II.4. II.4. II.5 Re II.5. II.5.	reening at the Semi-classical Approximation 1 Case of a single subband occupation	66 71 73 77 77 84 93 01 05

II.6 Resu	ults for Electron-Phonon Interaction 2	23
II.6.1	Optical phonon scattering	224
II.6.2	Acoustical phonon scattering	
II.6.3	Energy loss rate	231
II.7 Beyo	ond the Born Approximation 2	35
II.7.1	Scattering between Landau levels	238
Part III	Exercises 2	55
1	Average position and velocity	257
2	Average velocity in a bound state	257
3	Density of states	258
4	Density of states of a camel back shaped dispersion	
	relation	260
5	Heisenberg inequality in a quantum well with	
	infinitely high barriers	26:
6	Manipulating Slater determinants	266
7	Pauli principle for two weakly interacting electrons	
	in 1D	267
8	Calculation with Pauli matrices	27(
9	Moss-Burstein shift of interband absorption	27
10	Virial theorem	27;
11	Absence of degeneracy for the 1D bound states	276
12	Variational method: hydrogen atom	278
13	Variational method: electron in a triangular	
	potential	
14	Variational method: anharmonic oscillator	
15	Screened coulombic bound states	
16	A two-dimensional coulombic problem	287
17	Inter-subband transitions in cubic GaN/AlN	
	quantum wells: information on the conduction band	
	offset	
18	Asymmetrical square quantum well	
19	Spherical quantum dots	
20	Delta quantum well	298