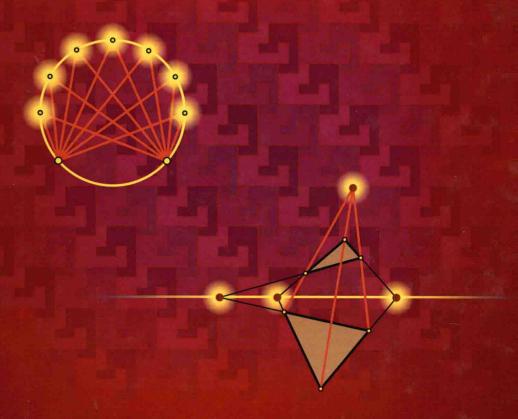
Classical Geometry

Euclidean, Transformational, Inversive, and Projective



I. E. Leonard • J. E. Lewis • A. C. F. Liu • G. W. Tokarsky

CLASSICAL GEOMETRY

Euclidean, Transformational, Inversive, and Projective

I. E. Leonard, J. E. Lewis, A. C. F. Liu, G. W. Tokarsky
Department of Mathematical and Statistical Sciences
University of Alberta

Copyright © 2014 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Leonard, I. Ed., 1938- author.

Classical geometry: Euclidean, transformational, inversive, and projective / I. E. Leonard, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada, J. E. Lewis, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada, A. C. F. Liu, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada, G. W. Tokarsky, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-67919-7 (hardback)

1. Geometry. I. Lewis, J. E. (James Edward) author. II. Liu, A. C. F. (Andrew Chiang-Fung) author. III. Tokarsky, G. W., author. IV. Title.

QA445.L46 2014

516-dc23 2013042035

Printed in the United States of America.

CLASSICAL GEOMETRY

PREFACE

It is sometimes said that geometry should be studied because it is a useful and valuable discipline, but in fact many people study it simply because geometry is a very enjoyable subject. It is filled with problems at every level that are entertaining and elegant, and this enjoyment is what we have attempted to bring to this textbook.

This text is based on class notes that we developed for a three-semester sequence of undergraduate geometry courses that has been taught at the University of Alberta for many years. It is appropriate for students from all disciplines who have previously studied high school algebra, geometry, and trigonometry.

When we first started teaching these courses, our main problem was finding a suitable method for teaching geometry to university students who have had minimal experience with geometry in high school. We experimented with material from high school texts but found it was not challenging enough. We also tried an axiomatic approach, but students often showed little enthusiasm for proving theorems, particularly since the early theorems seemed almost as self-evident as the axioms. We found the most success by starting early with problem solving, and this is the approach we have incorporated throughout the book.

XII PREFACE

The geometry in this text is synthetic rather than Cartesian or coordinate geometry. We remain close to classical themes in order to encourage the development of geometric intuition, and for the most part we avoid abstract algebra although we do demonstrate its use in the sections on transformational geometry.

Part I is about Euclidean geometry; that is, the study of the properties of points and lines that are invariant under isometries and similarities. As well as many of the usual topics, it includes material that many students will not have seen, for example, the theorems of Ceva and Menelaus and their applications. Part I is the basis for Parts II and III.

Part II discusses the properties of Euclidean transformations or isometries of the plane (translations, reflections, and rotations and their compositions). It also introduces groups and their use in studying transformations.

Part III introduces inversive and projective geometry. These subjects are presented as natural extensions of Euclidean geometry, with no abstract algebra involved.

We would like to acknowledge our late colleagues George Cree and Murray Klamkin, without whose inspiration and encouragement over the years this project would not have been possible.

Finally, we would like to thank our families for their patience and understanding in the preparation of the textbook. In particular, I. E. Leonard would like to thank Sarah for proofreading the manuscript numerous times.

ED, TED, ANDY, AND GEORGE

Edmonton, Alberta, Canada January, 2014

CONTENTS

Pre	Preface			
		PART I EUCLIDEAN GEOMETRY		
1	Con	gruency	3	
	1.1	Introduction	3	
	1.2	Congruent Figures	6	
	1.3	Parallel Lines	12	
		1.3.1 Angles in a Triangle	13	
		1.3.2 Thales' Theorem	14	
		1.3.3 Quadrilaterals	17	
	1.4	More About Congruency	21	
	1.5	Perpendiculars and Angle Bisectors	24	
	1.6	Construction Problems	28	
		1.6.1 The Method of Loci	31	
	1.7	Solutions to Selected Exercises	33	
	1.8	Problems	38	

vi CONTENTS

2	Conc	urrency	41
	2.1	Perpendicular Bisectors	41
	2.2	Angle Bisectors	43
	2.3	Altitudes	46
	2.4	Medians	48
	2.5	Construction Problems	50
	2.6	Solutions to the Exercises	54
	2.7	Problems	56
3	Simil	arity	59
	3.1	Similar Triangles	59
	3.2	Parallel Lines and Similarity	60
	3.3	Other Conditions Implying Similarity	64
	3.4	Examples	67
	3.5	Construction Problems	75
	3.6	The Power of a Point	82
	3.7	Solutions to the Exercises	87
	3.8	Problems	90
4	Theo	rems of Ceva and Menelaus	95
	4.1	Directed Distances, Directed Ratios	95
	4.2	The Theorems	97
	4.3	Applications of Ceva's Theorem	99
	4.4	Applications of Menelaus' Theorem	103
	4.5	Proofs of the Theorems	115
	4.6	Extended Versions of the Theorems	125
		4.6.1 Ceva's Theorem in the Extended Plane	127
		4.6.2 Menelaus' Theorem in the Extended Plane	129
	4.7	Problems	131
5	Area		133
	5.1	Basic Properties	133
		5.1.1 Areas of Polygons	134
		5.1.2 Finding the Area of Polygons	138
		5.1.3 Areas of Other Shapes	139
	5.2	Applications of the Basic Properties	140

		CONTENTS	vii
	5.3	Other Formulae for the Area of a Triangle	147
	5.4	Solutions to the Exercises	153
	5.5	Problems	153
6	Misc	ellaneous Topics	159
	6.1	The Three Problems of Antiquity	159
	6.2	Constructing Segments of Specific Lengths	161
	6.3	Construction of Regular Polygons	166
		6.3.1 Construction of the Regular Pentagon	168
		6.3.2 Construction of Other Regular Polygons	169
	6.4	Miquel's Theorem	171
	6.5	Morley's Theorem	178
	6.6	The Nine-Point Circle	185
		6.6.1 Special Cases	188
	6.7	The Steiner-Lehmus Theorem	193
	6.8	The Circle of Apollonius	197
	6.9	Solutions to the Exercises	200
	6.10	Problems	201
		PART II TRANSFORMATIONAL GEOMETRY	
7	The B	Euclidean Transformations or Isometries	207
	7.1	Rotations, Reflections, and Translations	207
	7.2	Mappings and Transformations	211
		7.2.1 Isometries	213
	7.3	Using Rotations, Reflections, and Translations	217
	7.4	Problems	227
8	The A	Algebra of Isometries	235
	8.1	Basic Algebraic Properties	235
	8.2	Groups of Isometries	240
		8.2.1 Direct and Opposite Isometries	241
	8.3	The Product of Reflections	245
	8.4	Problems	250

viii CONTENTS

9	The I	Product of Direct Isometries	255
	9.1	Angles	255
	9.2	Fixed Points	257
	9.3	The Product of Two Translations	258
	9.4	The Product of a Translation and a Rotation	259
	9.5	The Product of Two Rotations	262
	9.6	Problems	265
10	Sym	metry and Groups	271
	10.1	More About Groups	271
		10.1.1 Cyclic and Dihedral Groups	275
	10.2	Leonardo's Theorem	279
	10.3	Problems	283
11	Hom	otheties	289
	11.1	The Pantograph	289
	11.2	Some Basic Properties	290
		11.2.1 Circles	293
	11.3	Construction Problems	295
	11.4	Using Homotheties in Proofs	300
	11.5	Dilatation	304
	11.6	Problems	306
12	Tess	ellations	313
	12.1	Tilings	313
	12.2	Monohedral Tilings	314
	12.3	Tiling with Regular Polygons	319
	12.4	Platonic and Archimedean Tilings	325
	12.5	Problems	332
	PA	RT III INVERSIVE AND PROJECTIVE GEOMETRIES	
13	Intro	duction to Inversive Geometry	339
	13.1	Inversion in the Euclidean Plane	339
	13.2	The Effect of Inversion on Euclidean Properties	345
	13.3	Orthogonal Circles	353
	13.4	Compass-Only Constructions	362
	13.5	Problems	371

			CONTENTS	ix
14	Reci		375	
	14.1	Harmonic Conjugates		375
	14.2	The Projective Plane and Reciprocation		385
	14.3	Conjugate Points and Lines		396
	14.4	Conics		402
	14.5	Problems		409
15	Cros	s Ratios		411
	15.1	Cross Ratios		411
	15.2	Applications of Cross Ratios		422
	15.3	Problems		431
16	Intro	duction to Projective Geometry		435
	16.1	Straightedge Constructions		435
	16.2	Perspectivities and Projectivities		445
	16.3	Line Perspectivities and Line Projectivities		450
	16.4	Projective Geometry and Fixed Points		450
	16.5	Projecting a Line to Infinity		453
	16.6	The Apollonian Definition of a Conic		457
	16.7	Problems		463
Bibl	iograp	hy		466
Inde	ex			471

PART I

EUCLIDEAN GEOMETRY

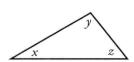
CHAPTER 1

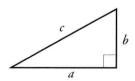
CONGRUENCY

1.1 Introduction

Assumed Knowledge

This text assumes a bit of knowledge on the part of the reader. For example, it assumes that you know that the sum of the angles of a triangle in the plane is 180° ($x+y+z=180^{\circ}$ in the figure below), and that in a right triangle with hypotenuse c and sides a and b, the Pythagorean relation holds: $c^2=a^2+b^2$.



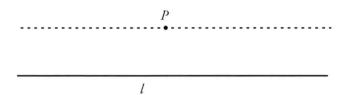


4 CONGRUENCY

We use the word *line* to mean *straight line*, and we assume that you know that two lines either do not intersect, intersect at exactly one point, or completely coincide. Two lines that do not intersect are said to be *parallel*.

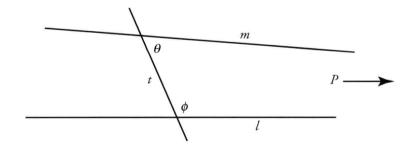
We also assume certain knowledge about parallel lines, namely, that you have seen some form of the *parallel axiom*:

Given a line l and a point P in the plane, there is exactly one line through P parallel to l.



The preceding version of the parallel axiom is often called *Playfair's Axiom*. You may even know something equivalent to it that is close to the original version of the *parallel postulate*:

Given two lines l and m, and a third line t cutting both l and m and forming angles ϕ and θ on the same side of t, if $\phi + \theta < 180^{\circ}$, then l and m meet at a point on the same side of t as the angles.



The subject of this part of the text is Euclidean geometry, and the above-mentioned parallel postulate characterizes Euclidean geometry. Although the postulate may seem to be obvious, there are perfectly good geometries in which it does not hold.