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PREFACE TO THE SECOND (REVISED)
EDITION OF VOLUME 2

Apart from a number of minor corrections and changes, a
substantial reformulation and up-dating of Chapters 14 and 15 has taken
place. This reformulation and up-dating is a major and very welcome
contribution from my friend and colleague, Dr J.W. Sanders, to whom I
express my sincere thanks. His efforts have produced a much better
result than T could have achieved on my own. Warm thanks are also due
to Dr Jo Ward, who checked some of the revised material.

New Sections 16.9 and 16.10 have also been added.

The bibliography has been expanded and brought up to date, though it
is still not exhaustive.

In spite of these changes, the third paragraph in the Preface to the
revised edition of Volume 1 is applicable here. What has been
accomplished here is not a complete account of developments over the
past 15 years; such an account would require many volumes. Even so, it
may assist some readers who wish to appraise some of these
developments. More ambitious readers should consult Mathematical
Reviews from around Volume 50 onwards.

R.E. E.
CANBERRA, September 1981



PREFACE TO VOLUME 2

The substance of the first three paragraphs of the preface to
Volume 1 of Fourier Series: A Modern Introduction applies equally well to
this second volume. To what is said there, the following remarks should
be added.

Volume 2 deals on the whole with the more modern aspects of Fourier
theory, and with those facets of the classical theory that fit most nat-
urally into a function-analytic garb. With their introduction to distri-
butional concepts and techniques and to interpolation theorems, respec-
tively, Chapters 12 and 13 are perhaps the most significant portions of
Volume 2. From a pedagogical viewpoint, the carefully detailed dis-
cussion of Marcinkiewicz’s interpolation theorem will, it is hoped, go some
way toward making this topic more accessible to a beginner.

A major portion of Chapter 11 is devoted to the elements of Banach
algebra theory and its applications in harmonic analysis. In Chapter 16
there appears what is believed to be the first reasonably connected intro-
ductory account of multiplier problems and related matters.

For the purposes of a short course, one might be content to cover
Section 11.1, the beginning of Section 11.2, Section 11.4, Chapter 12 up to
and including Section 12.10, Chapter 13 up to and including Section 13.6,
Chapter 14, and Sections 15.1 to 15.3. Much of Chapters 13 to 15 is
independent of Chapters 11 and 12, or is easily made so. While severe
pruning might lead to a tolerable excision of Section 11.4, which is re-
quired but rarely in subsequent chapters, it would be a pity thus to omit
all reference to Banach algebras. .

I at one time cherished the hope of including in this volume a list of
current research problems, but the available space will not accommodate
such a list together with the necessary explanatory notes. The interested
reader may go a long way toward repairing this defect by studying some
of the articles appearing in [Bi] (see, most especially, pp. 351-354
thereof).

The cross-referencing system is as follows. With the exception of refer-
ences to the appendixes, the numerical component of every reference to
either volume appears in the form a - b - ¢, where a, b, and ¢ are positive
integers; the material referred to appears in Volume 1 if and only if
1<a<10. In the case of references to the appendixes, all of which

vil



viii PREFACE

appear in Volume 1, a Roman numeral “I” has been prefixed as a
reminder to the reader; thus, for example, *“1,B.2.1" refers to Appendix
B.2.1in Volume 1.

An understanding of the main topics discussed in this book does not, I
hope, hinge upon repeated consultation of the items listed in the bibli-
ography. Readers with a limited aim should find strictly necessary only
an occasional reference to a few of the book listed. The remaining items,
and especially the numerous research papers mentioned, are listed as an
aid to those readers who wish to pursue the subject beyond the limits
reached in this book; such readers must be prepared to make the very
considerable effort called for in making an acquaintance with current
research literature. A few of the research papers listed cover devel-
opments that came to my notice too late for mention in the main text.
For this reason, any attempted summary in the main text of the current
standing of a research problem should be supplemented by an examin-
ation of the bibliography and by scrutiny of the usual review literature.

Finally, I take this opportunity to renew all the thanks expressed in
the preface to Volume 1, placing special reemphasis on those due to
Professor Edwin Hewitt for his sustained interest and help, to Dr. Garth
Gaudry for his contributions to Chapter 13, and to my wife for her
encouragement and help with the proofreading. My thanks for help in the
latter connection are extended also to my son Christopher.

CANBERRA, 1967 R.E. E.
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CHAPTER 11

Spans of Translates. Closed Ideals.
Closed Subalgebras. Banach Algebras

The first three sections of this chapter are devoted to some topics mentioned
earlier, namely, the study of closed invariant subspaces and closed ideals
[mentioned in 2.2.1 and 3.1.1(g)], and that of closed subalgebras [mentioned
in 3.1.1(e) and (f)]. Throughout the discussion E will denote any one of the
convolution algebras L? (1 € p < o) or C (see 3.1.1, 3.1.5, and 3.1.6) and
we shall consider closed invariant subspaces, closed ideals, and closed sub-
algebras in E. The cases E = C* and E = L™ could also be treated similarly,
provided that in the last case one considered L= with its so-called weak
topology, in which a sequence or net (f;) converges to f if and only if

.1 1
llimﬂff,gdx = fogdx

is true for each g € L!. Compare I, B.1.7and I, C.1.

For any compact group, Abelian or not, the structure theory for closed
invariant subspaces and closed ideals is simple. For the group T the
details are fully elucidated in 11.2.1. By contrast, except for the case
E = L?, the structure of closed subalgebras is not yet fully describable,
even for the group 7.

Subsections 11.2.3 and 11.2.4 are included on “‘ cultural ’ grounds and
are intended to show how the relatively simple problems treated in 11.2.1
and 11.2.2 lead to ones of considerable complexity and interest when the
compact group T is replaced by a noncompact group such as R. (These
subsections are not essential to an understanding of the rest of the book.)
The relevant problems for the dual group Z are mentioned briefly in
11.2.5.

Section 11.3 is devoted to the problem of closed subalgebras in E.

The final section of this chapter (11.4) is devoted to a few of the funda-
mentals of commutative Banach algebra theory and some of its applications
to harmonic analysis. When applications are made to the algebras E men-
tioned above, we find that the topics mentioned in Section 4.1 undergo natural
development. Applications to other algebras will also be made and will
provide proofs of results stated in Section 10.6.

1



2 TRANSLATES. IDEALS. SUBALGEBRAS. BANACH ALGEBRAS

Section 11.4 is in no sense a balanced introduction to the study of Banach
algebras. References for further reading will be given in due course.

11.1 Closed Invariant Subspaces and Closed Ideals

By a closed invariant subspace of E is meant a linear subspace V of E
which is (1) closed for the normal topology of E (see 2.2.4), and (2)
invariant under translation, in the sense that f € V entails 7, f € V for all
a € T. (Compare the definition of invariant subspaces given in 2.2.1.)

Each f e E is contained in a smallest closed invariant subspace ¥,, which
is none other than the closure in E of the invariant subspace V, generated
by f (as defined in 2.2.1). The reader will note that V¥, depends in general
on the ambient space E: for example, if f is continuous, the closure of V,
in L? will in general be strictly larger than the closure of V, in C. Despite
this, we do not think it necessary to complicate the notation accordingly.

In view of the fact that E is an algebra under convolution, we follow the
usual algebraic terminology by describing as an ideal in E, a linear subspace
I of E with the property that fxgel whenever fel and ge E. A closed
tdeal in E is an ideal in E which is also a closed subset of E.

As will be seen in 11.1.2, the closed invariant subspaces of E and the
closed ideals in E are exactly the same things (although the invariant sub-
spaces and the ideals are not the same things).

11.1.1. IffeE, then f(n)e, e ¥, for all n e Z.
Proof. Direct computation shows that

f(n)en = €, *f'
Since e, € L', the assertion follows from 3.1.9. For an alternative proof, see
Exercise 11.5. Yet another type of proof is described in 11.2.2.

11.1.2. A subset of E is a closed invariant subspace of E if and only if it is
a closed ideal in E. (Compare with 3.2.3.)

Proof. (1) Let I be a closed ideal in E. We wish to show that I is transla-
tion-invariant. For this purpose, we utilize an argument appearing in 3.2.3.
Choose an approximate identity (k,)Z., comprised of elements of E (for
example, the Fejér kernels introduced in Section 5.1). Since I is an ideal,
(Tok,) « felforalln > 1and all fe L But (T,k,) »f = T,(k, »f) by 3.1.2,
and lim, ., k, *f = f in E by 3.2.2. Therefore lim,_ . 7,(k, *f) = T,f in
E. I being closed, it follows that 7',f € I. This shows that I is translation-
invariant and is therefore a closed invariant subspace of E.

(2) Let V be a closed invariant subspace of E. In order to prove that V is
a closed ideal in E, it suffices to show that f + g € V whenever fe Vand g ¢ E.
In doing this we may, since V is closed in E and since the trigonometric
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polynomials are everywhere dense in E (see 2.4.4), assume that g is a trigono-
metric polynomial; see 3.1.6. In that case, however, f* g is a finite linear
combination of terms f(n)e,,, and 11.1.1 shows at once that fxge V,.
Finally, since fe V, ¥, < V, and therefore f x g € V. The proof is complete.

11.1.3. Remarks. (1) It has been noted in 3.2.3 that E is a module over L?;
and in Section 12.7 it will appear that E is even a module over the superspace
M of L! composed of all Radon measures. It is quite simple to verify that the
closed submodules of E (qua module over L! or over M) are exactly the closed
ideals in E.

(2) The reader will take care to remember that 11.1.2 is established only
for the choices of E mentioned at the outset of this chapter; it is not true in
all cases of interest. For example, if L® is taken with its normed topology,
there are closed ideals in the convolution algebra L= that are not translation-
invariant; see Exercises 11.22 and 11.23. Theorem 11.1.2 is also false for the
measure algebra M introduced in Section 12.7; see Exercise 12.45.

11.2 The Structure of Closed Ideals and Related Topics

It can now be shown that a closed ideal I in E is characterized completely
in terms of the common zeros of the Fourier transforms of elements of I.

For any f e E, we denote by Z, the set of n € Z for which f(n) = 0; and
for any subset S of E we write

Zy=N{Z,: fe8).
11.2.1.  Let I be any closed ideal in E, and let f € E. Then fe I if and only
if Z, > Z,.

Proof. Obviously, Z, > Z, whenever fel. Suppose conversely that
SeE and Z; > Z;; we have to show that fel. Let n ¢ Z, and choose g € I
such that §(n) # 0. By 11.1.1, ¢, € ¥ ; and by 11.1.2, ¥, < I. Thus ¢, €1,
and this for any n ¢ Z,. A fortiori, e, € I for any n for which f(n) % 0. Now
6.1.1 shows that fis the limit in E of finite linear combinations of exponentials
e, with n restricted by the condition f(n) # 0. Since I is a closed linear sub-
space of E, it appears that f €I, as was to be proved.

Remarks. (1) In view of 11.1.2, 11.2.1 may be reformulated in the
following way. Let V be a closed invariant subspace of E and put § = Z\Zy;
then Vis identical with the closed linear subspace of E generated by {e, : n€S}.
In brief, V is generated (as a closed linear suhspace, a closed invariant
subspace, or a closed ideal) by the continuous characters it contains.

The equivalence of the two versions depends upon 6.1.1. As usual, the
result remains true for E = L™, provided the weak topology is used through-
out; in this connection it is useful (although not essential) to note that
limy_, oy f = f weakly in L™ whenever f e L>.
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(2) In 11.2.1 it is essential that the ideal I be assimed to be closed. For
example, if I is any everywhere dense and nonclosed ideal in E, then
Zy = g = Zg but I # E. In such cases there is no known simple structure
theorem.

(3) For a study of projections onto closed invariant subspaces of L?(G),
where @ is a noncompact group, see Rosenthal [1].

11.2.2. TheHahn-BanachTheorem Applied to11.2.1. A characteristically
modern tool for the discovery and proof of theorems about linear approxima-
tion is the Hahn-Banach theorem, which is described briefly in I, B.5.
We propose to indicate here how this theorem may be used to prove 11.2.1;
it is equally useful in connection with the analogous problems mentioned in
11.2.3 and 12.11 4.

It must be admitted that its application to the proof of 11.2.1 does not
appear to be particularly economical, and it must be stressed that the great
merit of the theorem lies rather in the range of problems to which it provides
a useful common approach (see [E], Chapter 2). No account of the methods
of modern analysis can afford to ignore it.

The notation being as in 11.2.1, let us face anew the problem of showing
that feI whenever Z, > Z,. Since I is a closed linear subspace of E, the
Hahn-Banach theorem (specifically I, B.5.2) affirms that to do this it suffices
(and is obviously necessary) to prove that, if F is any continuous linear
functional on E, and if

Fig) =0 forallgel, (11.2.1)

and
Z, > Z, (11.2.2)

then
F(f) = 0. (11.2.3)

Now, since I is invariant, (11.2.1) entails that
F(Tg9) =0 forallgel and all a. (11.2.4)
This suggests that we look at the function ¢, defined by
dila) = F(T,g). (11.2.5)

Since F is continuous on E, while a — T,¢ is continuous from R into E
(see 2.2.4), ¢, is a continuous function. The reader will also observe for
future use the fact that ¢, depends linearly and continuously on the
variable g € E:

I¢elle < £ - lglle-

The combination of these last remarks with a simple argument involving
Riemann sums permits the computation of the Fourier coefficients of &,-
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Thus (using an obvious notation),

a

By(n) = lim 5= 3 $(a)e" "% Aay

. 1 _
= lim F (2—” Z Tdkg + g ing, A(Zk) ’

by linearity of F, which in turn is equal to
F (lim 2—11; z T, g:e "% Aak)

on account of continuity of F. Now, if g is continuous, it i3 easy to check that
the limit appearing in the last expression displayed is none other than the
function

1 ~ina
x—»z;fg(x-—a)e da,

which is, by virtue of the basic properties of the invariant integral recounted
in 2.2.2, the function §(—n) - e_,. Accordingly, the formula

$o(n) = G(—n)* Fle_,) (11.2.6)

is established for continuous g € E. However, for a fixed 7w € Z, each side of
(11.2.6) is a continuous linear functional of g € E; since the continuous
functions are everywhere dense in E (a corollary of 2.4.4), (11.2.6) must
hold for all g € E. The reader is urged to verify carefully all the steps in this

computation of ¢,.
In view of (11.2.8), (11.2.4) entails that F(e,) = 0 whenever geI and

g(n) # 0. Therefore
Fle,) =0 for all n € Z\Z,. (11.2.7)

On the other hand, for any f € E we have from 6.1.1

f=lim Z (l - Nh-li-' l)f(n)e,,.

NN
So, by linearity and continuity of F,

F(f) = lim > (1 - %)ﬂn)ﬂa,). (11.2.8)

N=® nig N

Finally, by (11.2.2) and (11.2.7),

f(n)F(e,) =0 forallne Z,

so that (11.2.3) follows from (11.2.8). This completes the proof.
Remarks. The computation of the Fourier coefficients of ¢, could be
made to proceed more gracefully by appealing to the results of Chapter 12
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and Appendix I, C.1 concerning the analytic representation of continuous
linear functionals F on E. However, we have preferred at this stage to
sacrifice grace in favor of more elementary arguments.

11.2.3. Closure of Translations Theorems. The writer knows of no very
significant applications of 11.2.1 to problems of concrete analysis, though it has
its own interest as a structure theorem, albeit a simple one. However, it and
certain corollaries one can deduce from it have analogues for other groups
which are at once deeper and productive of genuinely significant results in
concrete analysis. We propose to mention these analogues, devoting this
subsection to so-called ‘closure of translations’ theorems, and the next to
some consequences of a Tauberian nature (see 5.3.5).

The position is that 11.2.1 and its derivatives, pertaining to the group T, are
simple prototypes of bigger and better things which owe their significance to
their applicability to noncompact groups.

When one contemplates replacing the compact group 7' by a noncompact
(locally compact Abelian) group @, it is difficult to repress the hope that an
analogue of the case E=L' of 11.2.1 lurks around the corner and awaits
discovery. There is little difficulty in framing a plausible analogue, and this
plausible analogue turns out to be *‘approximately true,” or to be “true in
spirit but false in detail.” (Concerning L!(G) for a general group. see, for
example, [R], Chapter 1; [HR]. Section 20; [E], Section 4.19; [Bo]; [Bo,],
Chapitre 2.)

The simplest choice for a noncompact group @ would undoubtedly be the
group Z. Despite this, the description immediately following is expressed in
terms of the groups R™ (R the additive group of real numbers with its usual
topology and m a natural number). One reason for this choice is thdt R™ is
more typical of noncompact groups than is Z. Another reason is that the
original “closure of translations™ theorem of Wiener (see [Wil, pp. 99-100),
which was the beginning of almost everything in this field, applies to the group
R. The analogous problems for the technically somewhat simpler group Z will
receive further attention in 11.2.5 and 12.11.4.

For f € LY(R™), the Fourier transform of f is the function on R™ defined by

f‘(f) = f T fnmf(xlr ey :t,,,)e""‘“x’x*"' +inZm) dxl .« .dzm

for ¢ = (¢, -, én) € R™; Z, is defined to be the set of zeros off';. and, for
any ideal I in L'(R™), Z, is defined to be the intersection of the sets Z, when f
ranges over I. (A brief treatment of Fourier transforms of functions in L1(R)
and L?(R) appears in Chapters 9 and 19 of [R,]; see also [Wi] and [Ti], and the
references cited therein.)

The Wiener closure of translations theorem for.R™ asserts that an ideal I in
L'(R™) is everywhere dense in L*(R™) if (and only if) Z; = . Thisis a perfect
analogue of the corresponding special case of 11.2.1, and is indeed encouraging.

For quite a while it remained tantalizingly in doubt whether a general closed
ideal I in L!(R™) necessarily contains every f € L}(R™) such that Z; 2 Z;. The



{11.2] THE STRUCTURE OF CLOSED IDEALS AND RELATED TOPICS 7

first example showing that this was not always the case was given by Laurent
Schwartz [1] in 1948 and applied to R™ with m > 3; sce also Reiter {1] and
12.11.5. Another decade was to elapse before similar examples pertaining first
to R, and then to any noncompact G, were produced by Malliavin {1] in 1959.

Despite this disappointment, it turns out that if Z; is topologically simple
enough, then I does indeed contain every f e L'(R™) for which Z, > Z;; and
that the conclusion stands, whatever Z,, if in addition f is subject to smooth-
ness conditions. Results of this type permit the reader to judge for himself to
what extent the analogue of 11.2.1 (for E = L!) may be claimed to be
‘“approximately true.”” See [HR], (39.24); [Re], p. 28; [Kz], p. 225;[R], 7.24;
MR 37 # 6694; 40 # 6491; 46 # # 9650, 9652, 49 # 9542; 53 # 14025; 54
# # 10980, 13464.

A set § < R™ having the property that

feLYR™), Z,> 2 = fel

for every closed ideal I in L}(R™) for which Z; = S, is termed a spectral (or
harmonic) synthesis set in R™; Rudin ([R], p. 158) refers to them more briefly
as S-sets. It is known that S is a spectral synthesis set in this sense if and only
if there is but one closed ideal I in L!(R™) satisfying Z; = S.

Malliavin’s result cited above asserts precisely that there exist closed subsets
of R™ which are not spectral synthesis sets. On the other hand, the opening
statement in the last paragraph but one amounts to saying that conditions of
topological simplicity are known which ensure that a given closed set S is a
spectral synthesis set; compare Exercise 12.52.

Malliavin’s result cited above has given rise to many extensions, improve-
ments and simplifications. For some (if not all) of the details, the reader should
consult Malliavin [1], [2]; [R], Chapter 7; [KS], Chapitre IX; [Kz], pp. 229
ff; [HR], §42; de Leeuw and Herz [1]; MR 31 # 2567; 39 # 1977; Exercise
12.53 below. At this point we remark merely that Malliavin’s original construc-
tion has been simplified by Kahane and Katznelson [2] and Richards [1]; and
that Varopoulos [1], [2] introduced an entirely original (tensor product) ap-
proach to spectral synthesis problems in Banach algebras; see MR 41 # 830
and the remarks in 11.4.18(4) below. ‘

As has been indicated, strictly analogous problems arise when attention is
transferred from L!(R™) to £'(Z); concerning this particular extension we shall
have a little more to say in Subscctions 11.2.5, 12.11.4, 12.11.5, and 12.11.6.

Mention must also be made of analogues for noncompact groups G of the
remaining cases covered by 11.2.1, namely, the closure of translations theorems
in E=1L% (1 < p <o) and E = C. The results for L*(@) with its weak
topology (sce the opening remarks to this chapter) go hand in hand with those
for L}(G) already discussed. For L3(R) a complete solution was given by Wiener
((Wi), p. 100), and this extends without trouble to L2(G). In all other cases,
that is, for values of p different from 1, 2, and oo, the known results are less
complete. While conditions are known which are sufficient to ensure that the
linear combinations of the translates of a given f € L?(G) are everywhere dense
in that space, and yet others arc known which are necessary for this to happen,
there remains a gap between the two types of conditions. All attacks on this
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problem are bedevilled by the preliminary task of devising and handling a
tractable definition of the Fourier transform of a function belonging to an
arbitrary space LP(G). This may be done in terms of pscudomeasures and
similar objects (the periodic prototypes of which are mentioned in Section
12.11; sce especially 12.11.4). There is, alas, no connected account in book
form, but sce Herz's survey article (2], Gaudry [1], {3}, Edwards [4] and the
references there cited, and Warner [1]. (The case of the group Z is discussed
briefly in 11.2.5.). See also MR 38 # 4904.

One striking fact, applying when G is noncompact and 1 <p <2, is that
there exists a closed invariant subspace V # {0} in L%(@) which contains no
nonzero element of L?(G); see MR 52 # 14849. See also MR 48 # 11915.

Finally, an even wider diversity obtains when one turns to analogues of the
case E = C of 11.2.1. This is due to the fact that there are, in relation to a
noncompact G, several natural spaces of continuous functions which coalesce
for compact groups but which otherwisc are widely different. The following
four contenders have reccived attention:

(1) the space C(G) of all continuous functions on @, with the topology of
locally uniform convergence;

(2) the space BC(G) of bounded, continuous functions on G, with the
topology of uniform convergence;

(3) the space -BUC(G) of bounded, uniformly continuous functions on G,
with the topology of uniform convergence;

(4) the space Co(G) of continuous functions which tend to zero at infinity,
with the topology of uniform convergence.

For €o(G) fairly complete results are known. For the remaining three, results
arc hard to come by; in the case of BC(G) and BUC(G), more progress has been
made concerning approximation relative to a weaker (the so-called *“‘strict”’)
topology, originally suggested by ideas of Beurling; sec Edwards [5] and
Harasymiv [1). In the casc of €{@), most attention has been paid to functions,
the lincar combinations of translates of which arc not everywhere dense in
C(G): these were introduced and studied (for @ = R) by Laurent Schwartz [2]
in 1947, who christened them mean periodic functions; see also [Kah,]. Some
of Schwartz’s results have since been extended to more general groups by
Ehrenpreis [ 1], Elliott [1], Gilbert [1], and others.

11.2.4. About Tauberian Theorems. We pass on to consider briefly some
conscquences of such closure of translations theorems as are typified by the
casec Z; = @ of 11.2.1 and the generalizations thereof mentioned in 11.2.3.

Let us begin with the group 7. Suppose we take a subset 4 of 7 and a
nonvoid collection IT of nonvoid subsets of A satisfying the following two
conditions:

(1) the intersection of any two members of I1 contains a member of I1 (in

M. Bourbaki’s language, this signifies that I1 is a filter base on 4);
(2) ifae A and P € I, there exists I’ € I1 such that

Pca+P={a+z:2z€P}.



