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PREFACE

This work is the outgrowth of a plan to make a uniform presentation of
the investigations on earthquake seismology, underwater sound, and model
seismology carried on by the group connected with Lamont Geological
Observatory of Columbia University. The scope was subsequently enlarged
to cover a particular selection of related problems. The methods and
results of the theory of wave propagation in layered media are important
in seismology, in geophysical prospecting, and in many problems of
acoustics and electromagnetism.

Although the mathematical discussions of electromagnetic waves, water
waves, and shock waves are very close to the methods used in this book,
we had to reduce them to a few brief references. Many of the methods
which have been used in seismological problems were originally developed
in studies on electromagnetic waves. It is hoped that a systematic pre-
sentation of problems concerning elastic-wave propagation may now be
useful in other fields.

The experimental viewpoint has, to a large extent, governed the selection
of problems. For many years, research in seismology has been characterized
by separation of the experimental and theoretical methods. The interplay
of the two methods guided the research program which led to this book,
and it has been retained whenever possible. Observations of surface waves
from explosions and earthquakes, flexural waves in ice, and SOFAR
sound propagation are a few examples of topics in which the theoretical
and practical investigations benefited each other.

An effort was made to compile a comprehensive and systematic bibliog-
raphy of the world literature for the main topics discussed. Few workers
in this field could become familiar with all the past investigations, which
are scattered in many journals.

We are very grateful to the Air Force Cambridge Research Center, the
Bureau of Ships, and the Office of Naval Research for support of the
program of research on elastic-wave propagation at the Lamont Geological
Observatory. Peter Gottlieb, Dr. Samuel Katz, Dr. A. Laughton, Dr.
Franklyn Levin, and Stefan Mueller kindly read the manuscript and made
helpful suggestions.

Mavurice Ewine
WENCESLAS JARDETZKY
FrANk PRESs
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LIST OF SYMBOLS

Velocity of Rayleigh waves

Phase velocity

Young’s modulus

Strain components

Angle of emergence

Frequency or constant of gravitation

Angle of incidence for shear waves

Hankel functions of the order n

Modified Bessel function of the first kind of the order n
Angle of incidence

Bessel functions of the order n

Wave number

Coefficient of incompressibility

Modified Bessel function of the second kind of the ordern
Wave length

Stress components

Principal value (of an integral)

Hydrostatic pressure .

Displacement components in cylindrical coordinates
Displacement

Period

Group velocity

Velocity

Body forces

. Compressional-wave velocity

Shear-wave velocity
Parameter

Phase shift

Cubical dilatation or an angle
Critical angle

Root of the Rayleigh equation or parameter
Lamé constants

Density _

Poisson’s ratio or an angle
Displacement potentials
Velocity potential

Rotation’

Angular frequency
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CHAPTER 1

FUNDAMENTAL EQUATIONS AND SOLUTIONS

1-1. Equations of Motion. The problems we shall consider concern the
propagation of elastic disturbances in layered media, each layer being
continuous, isotropic, and of constant thickness. We begin with a brief
outline of the theory of motion in elastic media and a derivation of the
equations of motion. A more detailed treatment may be found in reference
books, e.g., Sommerfeld [57].1
~ When a deformable body undergoes a change in configuration due to
the application of a system of forces, the body is said to be strained.
Within the body, any point P with space-fixed rectangular coordinates
(2, y, 2) is then displaced to a new position, the components of displacement
being, respectively, u, v, w. If @ is a neighboring point (z + Az, ¥ + Ay,
z + Az2), its displacement components can be given by a Taylor expansion
in the form :

. u du du

w+ o Ax+ay Ay + 5, Az +

) D) v
v+axAx+ayAy+azAz+-'- @1-1)

ow ow qw
“’+ax Ax+6y Ay+az L Tl

For the small strains associated with elastic waves, higher-order terms
can be neglected. Then, introducing the expressions

Q. =%(g—';—g§> Ouy = %(g—’;-k%) (1-2)
and others obtained by the cyclic change of letters z, y, z and u, v, w,
respectively, we may write the displacement components (1-1) in the form
u+ (2,82 — 2,4y) + (.0 + e.,AY + e..42)
v + (A — QA2 + (6.7 + e,,Ay + ¢,.42) (1-3)
w + (R.Ay — QAL) + (e..Av + e,,Ay + e,,A2)

fNumerals in brackets in the text correspond to the numbered references at the end
of the chapter. ;

1



2 ELASTIC WAVES IN LAYERED MEDIA

The first terms of these expressions are the components of displacement
of the point P. It can be shown that the terms in the first parentheses
correspond to a pure rotation of a volume element and that the terms in
the second parentheses are associated with deformation or strain of the
element. The array

ezz ezv e.-n
evz ew ev: (1“4)
e-z et v el 2

represents the symmetrical strain tensor at P,sincee,, = e,, - -- . The three
components

PR .. il . S

= oz R Oy o 9z
represent simple extensions parallel to the 2, y, z axes, and the other three
eXpressions e,,, ¢,,, €., are the shear components of strain, which may be
shown to be equal to half the angular changes in the zy, yz, 2z planes,
respectively, of an originally orthogonal volume element. It is also shown
in the theory of elasticity that there is a particular set of orthogonal axes
through P for which the shear components of strain vanish. These axes
are known as the principal axes of strain. The corresponding values ‘of
€z €y €., are the principal extensions which completely determine the
deformation at P. Thus the deformation at any point may be specified by
three mutually perpendicular extensions. It is also known that the sum
¢ + e, -+ e., is independent of the choice of the orthogonal coordinate
system.

The cubical dilatation 8, defined as the limit approached by the ratio

of increase in volume to the initial volume when the dimensions Az, Ay, Az
approach zero, is

lim (Az + e, Ax)(Ay + e, AY)(Az + e, A2) — Ax Ay Az

Az Ay Az
| w | ow
or 0= 6wt ten =5t 5+ 37 (1-5)

neglecting higher-order terms. Although the principal extensions iy Cyiis Cop
are used in the derivation of (1-5), the result holds for any cartesian
system because of the invariance of the sum.

Forces acting on an element of area AS separating two small portions
of a body are, in general, equivalent to a resultant force or traction R
upon the element and a couple C (Fig. 1-1). As AS goes to zero, the limit
of the ratio of traction upon AS to the area AS is finite and defines the
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stress. The ratio of the couple to AS, involving an additional dimension

of length, may be neglected. For a complete specification of the stress
at P, it s necessary to give the traction at P acting upon all planes passing
through the point. However, all these tractions may be reduced to com-

Z A

S

¥1a. 1-1. Traction R and couple C acting on element of area AS. Stress components
Dyys Pys, a0d Py in plane normal to y axis.

ponent tractions across planes parallel to the coordinate planes. Across
each of these planes the tractions may be resolved into three components
parallel to the axes. This gives nine elements of stress (see Fig. 1-1)

p” pﬂl pzn
Duz= Puy  Pus (1-6)

Pz Psv  Pss

where the first subscripts represent a coordinate axis normal to a given
plane and the second subscripts represent the axis to which the traction
is parallel. The array (1-6) is a symmetrical tensor. This may be proved
by considering the equilibrium of a small volume element within the medium -
with sides of length Az, Ay, Az, parallel to the z, y, z axes. Moments about -
axes through the center ef mass arise from tractions corresponding to
stresses P.,, Pysy -+ - Maments of normal stresses vanish, since the cor-
responding forces intersect the axes through the center of mass of the
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infinitesimal element and moments of body forces are small quantities of
higher order than those of stresses. The equilibrium conditions require,
therefore, that the shear components of stress be equal in pairs, p,, = p,.,
etc. As was the case for the shear components of strain, three mutually
perpendicular axes of principal stress may be found with respect to which
the shear components of stress vanish. Then the stress at a point is com-
pletely specified by the principal stresses .., P,., P.s corresponding to
these axes.

To derive the equations of motion we consider the tractions across the
surfaces of a volume element corresponding to the stress components
(1-6) and the body forces X, ¥, Z which are proportional to the mass in

2 Pes
T P+ oz Az

op.,
Py + Tz Az

&
Frc. 1-2. Stress components in the faces AS, of a volume element.

the volume element (Fig. 1-2). When the tractions are considered, the
2 component of the resultant force acting on an element, e.g., produced
by stresses in the faces normal to the z, y, 2 axes, is (again neglecting higher-
order terms)

(p,, e ar Az — p.. ) AS,
_ 0P 2. )
( it oy Ay — p,. ) &S,

82_, )
( (73 + 8z p.z A’ga

where AS,, AS,, AS, are the areas of the faces normal to the z, y, 2 axes,
respectively. 1t follows that the z component of force resulting from all
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the tractions is given by the three terms
(6x+6y+ a9z e By

The equations of motion are obtained by adding all the forces and the

inertia terms —p d*u/df® AzAyAz, - - - , for each component:
P%ﬁ = pX + %ﬁ -+ ng”f + Qg;—’
fgats Bheihs S et (1-7)
P%—g = oz + 2= 4 a—(?;@?;—‘ + e

In these expressions, p is the density of the medium.

The Equation of Continuity. This equation expresses the condition that
the mass of a given portion of matter is conserved. The total outflow of
mass from the elementary volume Ar during the time Af is div pv Ar Al
where v is the velocity, whose components parallel to the z, y, 2 axes are
4, b, ®. The loss of mass during the same time is — (9p/0t) At At. Equating
these last two expressions gives

OB T S e »
at+d1va—0 (1-8)

Another form of this equation is

4o m

dt+pd1vv——0 (1-9)
where the operation

d 3

= 5 + vegrad (1-10)

represents the ‘“total or material” rate of change following the motion
and /0t is the local rate of change.

1~2. Elastic Media. In the generalized form of Hooke’s law, it is as-
sumed that each of the six components of stress is a linear function of all
the components of strain, and in the general case 36 elastic constants
appear in the stress-strain relations.

Isotropic Elastic Solid. On account of the symmetry associated with an
isotropic body, the number of elastic constants degenerates to two, and
the stress-strain relations may be written in the following manner, using
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Lamé’s constants A and p: :
ou ou )

i % - (2 4 =

ow dw Ju
P = A0+ 2u5E P = “(az + az)
We also could have written these equations using any two of the constants:
Young’s modulus E, Poisson’s ratio o, or the coefficient of incompressi-
bility k. The relations between these elastic constants are given by the
equations

A = o i = B
T+00-29 "7 20+9
2B\ + 2 A |
B = #3\ + 20) FORTR . T 41
AN+ T2+ w fa
k=X+ 3u :
Using Eqgs. (1-7) and (1-1 1), we can write the equations of motion in
terms of displacements u, », w of a point in an elastic solid:
u
P FYd

9 2
L =(x+u)§§+nw+pY (1-13)

o —
=()\+u)55+qu+pX

2, .
S =0+ W S+ aVw+ 2
We have replaced d°/d® by 8°/af, since it follows from (1-10) that the
difference between corresponding expressions involves second powers or
products of components which are assumed to be small. By neglecting
these products, we linearize our differential equations.

For many solids, A and u are nearly equal, and we will occasionally use
the Poisson relation A = u as a simplification. This corresponds to k = §u
and ¢ = %.

For an incompressible medium, 6 = divv = 0 or, by Eq. (1-9), dp/dt = 0.

Ideal Fluid. 1f the rigidity u vanishes, the medium is an ideal fluid.
From (1-11) and (1-12) we find p,. = p,, = p.. = k@ = —p, where —p,
the value of the remaining independent component of the stress tensor,
is the hydrostatic or mean pressure. In liquids the incompressibility k is
‘very large, whereas it has only moderate values for gases. If a liquid is



FUNDAMENTAL EQUATIONS AND SOLUTIONS 7

incompressible, k = © and ¢ = 0.5. The equations of small motion in an
ideal fluid may be obtained from (1-13) with x = 0.

1-3. Imperfectly Elastic Media. We shall also be concerned with the
damping of elastic waves resulting from imperfections in elasticity, par-
ticularly from “internal friction.” (For a discussion, see Birch [9, pp.
88-91].) The effect of internal friction may be introduced into the equations
of motion by replacing an elastic constant such as u by u + 4’ 8/9¢ in the
equations of motion. This is equivalent to stating that stress is a linear
function of both the strain and the time rate of change of strain. For
simple harmonic motion, the time factor ¢’“* is used, and the effect of
internal friction is introduced by replacing u by the complex rigidity
w(l + i/Q), where 1/Q = wp//u. In many cases @ may be treated as
independent of frequency to a sufficiently good approximation but the
more detailed discussion which this case requires is given in Sec. 5-6.
 1-4. Boundary Conditions. If the medium to which the equations of
motion are applied is bounded, some special conditions must be added.
These conditions express the behavior of stresses and displacement at the
boundaries. At a free surface of a solid or liquid all stress components
vanish. In the problems which follow it will be assumed that solid elastic
media are welded together at the surface of contact, implying continuity
of all stress and displacement components across the boundary. At a
solid-liquid interface slippage can occur, and continuity of normal stresses
and displacements alone is required. Since the rigidity vanishes in the
liquid, tangential stresses in the solid must vanish at the interface.

1~5. Reduction to Wave Equations. The equations of motion of a fluid
[derived from (1-13) with x = O and therefore A = k] can be simplified
and reduced to one differential equation if a velocity potential @, defined
as follows, exists:

i 0

a—‘az

=

i~ 5y Tie
it (1-14)

QJ‘Q)
< IS

If the body forces are neglected, Eqs. (1-13) reduce to

a . 96 b a9
Pot T Eoyit Pl be (1-15)

ou

a6
pgt_—kr?x

Now, writing o® = k/p, we easily see from (1-14) and (1-15) that

g—’f = a*0 4 F()) © (1-16)
iy » = o f 9 d (1-17)
0

where the additive function of ¢ is omitted, being without significance.
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From the definition of mean pressure p = —k# and (1-16) we have

(s 17} S

P=—ry (1-18)

Then, from (1-16) and (1-5) we obtain

k) 1 8:-

Vg == 358 (1-19)
in which small quantities of higher order have been neglected. This wave
equation holds for small disturbances propagating in an ideal fluid with
velocity a, under the assumptions mentioned above.

For displacements in a solid body, it is convenient to define a scalar
potential ¢ and a vector potential §(¥i, Y., ¥s) as follows:

a«; aws Vs
+ >

610 a'ﬁl Q_'Lq e
+ i (1-20)

or, in vector form,

s(u, v, w) = grad ¢ + curl §(y1, ¥a, ¥s) (1-20")

By the definition of 6 as given by (1-5), we obtain
B (1-21)

In general, the equations of motion (1-13) represent the propagation
of a disturbance which involves both equivoluminal (¢ = 0) and irrotational
(2 = 0) motion, where § = div s(u, v, w) and Q = } curl s [see Egs. (1-2)].
However, by introduction of the potentials ¢ and ¢,, separate wave equa~
tions are obtained for these two types of motion. Assuming that the body
forces may be neglected, we can write the first of Eqs. (1-13) in the form

9 w) (Ws)_’g( u)

ax( ot +ay P a8 oz \P aF
2.8 _6_ 2 i 2 i 2 il _Q 2
—(R+-n)axV¢+#axV¢+uayV¢s nazvtﬁz

It is easy to see that this equation and the two others from (1-13) written

in a similar form will be satisfied if the functions ¢ and ¥, are solutions of

the equations

19
2

o

e

2
o g-,"af;‘ i=1,2,3  (1-22)

va¢ by e
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