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(( L'impeto )) cioe la propagazione della perturbazione del mezzo o, pii in
generale, di un qualsiasi elemento saliente ({ é molto pii veloce che II'acqua,
perché molte sono le volte che I’onda fuggie il locho della sua creatione, e ll'acqua
non si muove di sito, a ssimilitudine delle onde fatte il maggio nelle biade dal corso
de venti, che ssi vede correre I’onde per le campagnie, e le biade non si mutano di
lor sito )).

({ The impetus )) that is, the propagation of the perturbation of the medium or,
more generally, of any salient element (( is much faster than the water, because
many are the times that the wave escapes the place of its creation, and water stays
in place, as the waves made in May in the corn by the blowing of the wind, so that
one can see the running waves in the fields and the corn does not change place )).

Leonardo da Vinci (Del moto e misura dell’acqua)



Preface

This book presents the fundamentals of wave propagation in anisotropic, anelas-
tic and porous media, including electromagnetic waves. This new edition incor-
porates research work performed during the last seven years on several relevant
topics, which have been distributed in the various chapters. The emphasis is
on geophysical applications for hydrocarbon exploration, but researchers in the
fields of earthquake seismology, rock acoustics and material science — including
many branches of acoustics of fluids and solids (acoustics of materials, non-
destructive testing, etc.) — may also find this text useful. This book can be
considered, in part, a monograph, since much of the material represents my own
original work on wave propagation in anisotropic, viscoelastic media. Although
it is biased to my scientific interests and applications, I have, nevertheless, sought
to retain the generality of the subject matter, in the hope that the book will be of
interest and use to a wide readership.

The concepts of anisotropy, anelasticity! and poroelasticity in physical media
have gained much attention in recent years. The applications of these studies
cover a variety of fields, including physics and geophysics, engineering and soil
mechanics, underwater acoustics, etc. In particular, in the exploration of oil and
gas reservoirs, it is important to predict the rock porosity, the presence of fluids
(type and saturation), the preferential directions of fluid flow (anisotropy), the
presence of abnormal pore-pressures (overpressure), etc. These microstructural
properties and in situ rock conditions can be obtained, in principle, from seismic
and electromagnetic properties, such as travel times, amplitude information and
wave polarization. These measurable quantities are affected by the presence
of anisotropy and attenuation mechanisms. For instance, shales are naturally
bedded and possess intrinsic anisotropy at the microscopic level. Similarly,
compaction and the presence of microcracks and fractures make the skeleton of
porous rocks anisotropic. The presence of fluids implies relaxation phenomena,
which causes wave dissipation. The use of modelling and inversion for the
interpretation of the wave response of reservoir rocks requires an understanding
of the relationship between the seismic and electromagnetic properties and the

1. The term anelasticity seems to have been introduced by Zener (1948) to denote materials in which
“strain may lag behind stress in periodic vibrations”, in which no permanent deformation occurs
and wherein the stress—strain relation is linear. Viscoelasticity combines the classical theories of
elasticity and Newtonian fluids, but is not restricted to linear behaviour. Since this book deals with
linear deformations, anelasticity and viscoelasticity will be synonymous herein.
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rock characteristics, such as permeability, porosity, tortuosity, fluid viscosity,
stiffness, dielectric permittivity, electrical conductivity, etc.

Wave simulation is a theoretical field of research that began nearly
four decades ago, in close relationship with the development of computer
technology and numerical algorithms for solving differential and integral
equations of several variables. In the field of research known as com-
putational physics, algorithms for solving problems using computers are
important tools that provide insight into wave propagation for a variety of
applications.

In this book, I examine the differences between an ideal and a real description
of wave propagation, where ideal means an elastic (lossless), isotropic and
single-phase medium, and real means an anelastic, anisotropic and multi-phase
medium. The first realization is, of course, a particular case of the second,
but it must be noted that, in general, the real description is not a simple and
straightforward extension of the ideal description.

The analysis starts by introducing the constitutive equation (stress—strain
relation) appropriate for the particular rheology.? This relation and the equations
of conservation of linear momentum are combined to give the equation of
motion, a second-order or a first-order matrix differential equation in time,
depending on the formulation of the field variables. The differential formulation
for lossy media is written in terms of memory (hidden) variables or alternatively,
fractional derivatives. Biot theory is essential to describe wave propagation in
multi-phase (porous) media from the seismic to the ultrasonic frequency range,
representative of field and laboratory experiments, respectively. The acoustic—
electromagnetic analogy reveals that the different physical phenomena have
the same mathematical formulation. For each constitutive equation, a plane-
wave analysis is performed in order to understand the physics of the wave
propagation (i.e., calculation of phase, group and energy velocities, and quality
and attenuation factors). For some cases, it is possible to obtain an analytical
solution for transient wave fields in the space-frequency domain, which is then
transformed to the time domain by a numerical Fourier transform. The book
concludes with a review of the so-called direct numerical methods for solving
the equations of motion in the time-space domain. The plane-wave theory and
the analytical solutions serve to test the performance (accuracy and limitations)
of the modelling codes.

A brief description of the main concepts discussed in this book follows.

Chapter 1: Anisotropic Elastic Media. In anisotropic lossless media, the
directions of the wavevector and Umov—Poynting vector (ray or energy-flow
vector) do not coincide. This implies that the phase and energy velocities
differ. However, some ideal properties prevail: there is no dissipation, the

2. From the Greek pe@ - to flow, and Loy6¢ — word, science. Today, rheology is the science
concermned with the behaviour of real materials under the influence of external stresses.
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group-velocity vector is equal to the energy-velocity vector, the wavevector
is normal to the wave-front surface, the energy-velocity vector is normal to
the slowness surface, plane waves are linearly polarized and the polarization
of the different wave modes are mutually orthogonal. Methods used to calcu-
late these quantities and provide the equation of motion for inhomogeneous
media are shown. I also consider the seismic properties of finely stratified
media composed of anisotropic layers, anomalously polarized media and the
best isotropic approximation of anisotropic media. Finally, the analysis of a
reflection—transmission problem and analytical solutions along the symmetry
axis of a transversely isotropic medium are discussed.

Chapter 2: Viscoelasticity and Wave Propagation. Attenuation is
introduced in the form of Boltzmann superposition law, which implies a
convolutional relation between the stress and strain tensors through the
relaxation and creep matrices. The analysis is restricted to the one-dimensional
case, where some of the consequences of anelasticity become evident. Although
phase and energy velocities are the same, the group velocity loses its physical
meaning. The concept of centrovelocity for non-harmonic waves is discussed.
The uncertainty in defining the strain and rate of dissipated-energy densities
is overcome by introducing relaxation functions based on mechanical models.
The concepts of memory variable and fractional derivative are introduced to
avoid time convolutions and obtain a time-domain differential formulation of
the equation of motion.

Chapter 3: Isotropic Anelastic Media. The space dimension reveals other
properties of anelastic (viscoelastic) wave fields. There is a distinct difference
between the inhomogeneous waves of lossless media (interface waves) and
those of viscoelastic media (body waves). In the former case, the direction
of attenuation is normal to the direction of propagation, whereas for inhomo-
geneous viscoelastic waves, that angle must be less than /2. Furthermore,
for viscoelastic inhomogeneous waves, the energy does not propagate in the
direction of the slowness vector and the particle motion is elliptical in gen-
eral. The phase velocity is less than that of the corresponding homogeneous
wave (for which planes of constant phase coincide with planes of constant
amplitude); critical angles do not exist in general, and, unlike the case of
lossless media, the phase velocity and the attenuation factor of the transmitted
waves depend on the angle of incidence. There is one more degree of free-
dom, since the attenuation vector is playing a role at the same level as the
wavenumber vector. Snell law, for instance, implies continuity of the tangential
components of both vectors at the interface of discontinuity. For homoge-
neous plane waves, the energy-velocity vector is equal to the phase-velocity
vector. The last part of the chapter analyzes the viscoelastic wave equation
expressed in terms of fractional time derivatives, and provides expressions of
the reflection and transmission coefficients corresponding to a partially welded
interface.
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Chapter 4: Anisotropic Anelastic Media. In isotropic media there are
two well-defined relaxation functions, describing purely dilatational and shear
deformations of the medium. The problem in anisotropic media is to obtain
the time dependence of the relaxation components with a relatively reduced
number of parameters. Fine layering has an “exact” description in the long-
wavelength limit. The concept of eigenstrain allows us to reduce the number
of relaxation functions to six; an alternative is to use four or two relaxation
functions when the anisotropy is relatively weak. Fracture-induced anisotropic
attenuation is studied, and harmonic quasi-static numerical experiments are
designed to obtain the stiffness components of anisotropic anelastic media. The
analysis of SH waves suffices to show that in anisotropic viscoelastic media,
unlike the lossless case: the group-velocity vector is not equal to the energy-
velocity vector, the wavevector is not normal to the energy-velocity surface,
the energy-velocity vector is not normal to the slowness surface, etc. However,
an energy analysis shows that some basic fundamental relations still hold: for
instance, the projection of the energy velocity onto the propagation direction is
equal to the magnitude of the phase velocity. The analysis is extended to qP—
gS wave propagation and expressions of the wave velocities, wave surfaces and
quality factors are given. It is also shown how to implement the memory-variable
approach to recast the equation of motion in full differential form.

Chapter 5: The Reciprocity Principle. Reciprocity is usually applied to
concentrated point forces and point receivers. However, reciprocity has a much
wider application potential; in many cases, it is not used at its full potential,
either because a variety of source and receiver types are not considered or their
implementation is not well understood. In this chapter, the reciprocity relations
for inhomogeneous, anisotropic, viscoelastic solids, and for distributed sources
and receivers are obtained. In addition to the usual relations involving directional
forces, it is shown that the reciprocity can also be applied to a variety of source-
receiver configurations used in earthquake seismology and seismic reflection and
refraction methods. Moreover, reciprocity applied to flexural waves illustrates
another applicability of the principle.

Chapter 6: Reflection and Transmission of Plane Waves. The SH and qP—
qSV cases illustrate the physics of wave propagation in anisotropic anelastic
media. In general, the reflected and transmitted waves are inhomogeneous, i.e.,
equiphase planes do not coincide with equiamplitude planes. The reflected wave
is homogeneous only when the symmetry axis is perpendicular to the interface.
If the transmission medium is elastic and the incident wave is homogeneous,
the transmitted wave is inhomogeneous of the elastic type, i.c., the attenuation
vector is perpendicular to the Umov—Poynting vector. The angle between the
attenuation vector and the slowness vector may exceed 90°, but the angle
between the attenuation and the Umov—Poynting vector is always less than
90°. If the incidence medium is elastic, the attenuation of the transmitted
wave is perpendicular to the interface. The relevant physical phenomena are
not related to the propagation direction (slowness vector), but rather to the
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energy-flow direction (Umov-Poynting vector) — for instance, the characteristics
of the elastic type inhomogeneous waves, the existence of critical angles,
and the fact that the amplitudes of the reflected and transmitted waves decay
in the direction of energy flow despite the fact that they grow in the direction
of phase propagation. The applications of the theory include propagation at
fluid/solid interfaces, Rayleigh surface waves and propagation through a set
of layers.

Chapter 7: Biot Theory for Porous Media. Dynamic porous media be-
haviour is described by means of Biot theory of poroelasticity. However, many
developments in the area of porous media existed before Biot introduced the
theory in the mid-50s. These include, for instance, Terzaghi law, Gassmann
equation, and the static approach leading to the concept of effective stress, much
used in soil mechanics. The simple asperity-deformation model is useful to
explain the physics of porous and cracked media under confining and pore-fluid
pressures. Moreover, I consider a model for pressure build-up due to kerogen-oil
conversion. The dynamical problem is analyzed in detail using Biot approach:
that is, the definition of the energy potentials and kinetic energy and the use of
Hamilton principle to obtain the equation of motion. The coefficients of the strain
energy are obtained by the so-called jacketed and unjacketed experiments. The
theory includes anisotropy and dissipation due to viscodynamic and viscoelastic
effects. A short discussion involving the complementary energy theorem and
volume-average methods serves to define the equation of motion for inho-
mogeneous media. The interface boundary conditions and the Green function
problem are treated in detail, since they provide the basis for the solution of
wave propagation in inhomogeneous media. The mesoscopic loss mechanism
is described by means of White theory for plane-layered media developed in
the mid-70s. The theory is applied to layered and fractured media in order to
obtain the five stiffness components of the equivalent transversely isotropic
medium. Then, I analyze the physics of diffusion fields resulting from Biot
equations. An energy-balance analysis for time-harmonic fields identifies the
strain- and kinetic-energy densities, and the dissipated-energy densities due to
viscoelastic and viscodynamic effects. The analysis allows the calculation of
these energies in terms of the Umov—Poynting vector and kinematic variables,
and the generalization of the fundamental relations obtained in the single-
phase case (Chapter 4). Measurable quantities, like the attenuation factor and
the energy velocity, are expressed in terms of microstructural properties, such
as tortuosity and permeability. Finally, I derive Gassmann equation for an
anisotropic frame and a solid pore infill. medskip

Chapter 8: The Acoustic—Electromagnetic Analogy. The two-dimensional
Maxwell equations are mathematically equivalent to the SH-wave equation
based on a Maxwell stress—strain relation, where the correspondence is magnetic
field/particle velocity, electric field/stress, dielectric permittivity/elastic
compliance, resistivity/viscosity and magnetic permeability/density. It is shown
that Fresnel formulae can be obtained from the reflection and transmission
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coefficients of shear waves. The analogy is extended to three dimensions.
Although there is not a complete correspondence, the material properties
are mathematically equivalent by using the Debye—Zener analogy. Moreover,
an electromagnetic energy-balance equation is obtained from viscoelasticity,
where the dielectric and magnetic energies are equivalent to the strain and
kinetic energies. Other analogies involve Fresnel wave surface and its elastic-
medium’s equivalent wave surface, Backus averaging for finely layered media,
the time-average equation, the Kramers—Kronig dispersion relations, the
reciprocity principle, Babinet principle, Alford rotation, and the diffusion
equation describing electromagnetic fields and the behaviour of the Biot quasi-
static mode (the second-slow wave) at low frequencies. Finally, useful cross-
property relations between elastic-wave velocity and electrical conductivity are
discussed in this chapter.

Chapter 9: Numerical Methods. In order to solve the equation of motion
by direct methods, the model (the geological layers in exploration geophysics
and seismology) is approximated by a numerical mesh; that is, the model is
discretized in a finite numbers of points. These techniques are also called grid
methods and full-wave equation methods, since the solution implicitly gives
the full wave field. Direct methods do not have restrictions on the material
variability and can be very accurate when a sufficiently fine grid is used. They
are more expensive than analytical and ray methods in terms of computer time,
but the technique can easily handle the implementation of different strain—
stress laws. Moreover, the generation of snapshots can be an important aid in
interpretation. Finite-differences, pseudospectral and finite-element methods are
considered in this chapter. The main aspects of the modelling are introduced as
follows: (a) time integration, (b) calculation of spatial derivatives, (c) source
implementation, including the moment-tensor source, (d) boundary conditions,
and (e) absorbing boundaries. All these aspects are discussed and illustrated
using the acoustic and SH wave equations. In addition, I discuss the concept of
fractional derivative and present the wave-modelling equations for single-phase
and porous media in cylindrical coordinates. The pseudospectral algorithms are
discussed in more detail.

This book is aimed mainly at graduate students and researchers. It requires a
basic knowledge of linear elasticity and wave propagation, and the fundamentals
of numerical analysis. The following books are recommended for study in these
areas: Love (1944), Kolsky (1953), Born and Wolf (1964), Pilant (1979), Auld
(1990a,b), Celia and Gray (1992), Jain (1984), Slawinski (2003), Mainardi
(2010) and Schon (2011). At the end of the book, I provide a list of questions
about the relevant concepts, a chronological table of the main discoveries and
a list of famous scientists, regarding wave propagation and its related fields of
research.

Slips and errors that were present in the second edition have been corrected
in the present edition. The history of science has been expanded by including
additional researchers and discoveries.
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Errata for the first and second editions can be found in my homepage at:
http://www.lucabaradello.it/carcione

Errata and comments may be sent to me at the following e-mail addresses:

jcarcione @libero.it
jearcione @inogs.it

An updated list of my articles can be found in my google-scholar profile:
http://scholar.google.it/citations7user=uTcM89IMAAAAJ&hl=en
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Basic Notation

I denote the spatial variables x, y and z of a right-hand Cartesian system by
the indices i,j,k = 1,2 and 3, respectively, the position vector by x or by r, a
partial derivative of order m with respect to a variable x; with 9", a first, second
and third time derivative with 3, 32 and 3;},, respectively, and a fractional time

derivative of order 8 with 8,‘8 . For clarity in reading and ease in programming, the
use of numbers to denote the subindices corresponding to the spatial variables
is preferred. The upper case indices /,/,... = 1,...,6 indicate the shortened
matrix notation (Voigt notation) where pairs of subscripts (i,j) are replaced by
a single number (I or J) according to the correspondence (11) — 1, (22) —
2,33y >3, (23) =(32) = 4, (13) = (1) = 5, (12) = (21) — 6. Matrix
transposition is denoted by the superscript “T7 (it is not indicated in two- and
three-components vectors), v/—1 by i, complex conjugate by the superscript
“¥”, the scalar and matrix products by the symbol “.”, the vector product by
the symbol “x”, the dyadic product by the symbol “®”, and unit vectors by §&;,
i = 1,2, 3 if referring to the Cartesian axes, The identity matrix in n-dimensional
space is denoted by I,,. The gradient, divergence, Laplacian and curl operators
are denoted by grad [ - ], div [ -], A [ - ] and curl [ - |, respectively. The
components of the Levi-Civita tensor € are 1 for cyclic permutations of 1,
2 and 3, —1 if two indices are interchanged and O if an index is repeated. The
operators Re( - ) and Im( - ) take the real and imaginary parts of a complex
quantity (in some cases, the subindices R and / are used). The Fourier-transform
operator is denoted by F [ - ] or a tilde above the function. The convention is

g(w) = f g(1) exp(—iwt)dt, g(t)=l]r f 'é(w)ew(iwr)dr,

—0 2 J_

where ¢ is the time variable and o is the angular frequency. In other cases, such
as the Green function, the transformed pair is denoted by g(f) and G(w). The
Einstein convention of repeated indices is assumed, but the notation I(I) or
i({) implies no summation. In general, I express vectors and column matrices
(arrays) by bold and lower case letters and matrices and tensors by bold and
upper case letters. In some cases, for simplicity, the same letter is used to denote
different physical quantities.
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