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Preface

The concept of composites covers a wide variety of materials of which one can tailor the properties with respect to end-
use applications, through a clever combination of constituents. A large variety of composite properties are theoretically
foreseeable. A sound combination of continuous brittle fibers and brittle matrix ends up in damage-tolerant ceramic
matrix composites (CMCs) with good mechanical properties in a broad range of temperatures. CMCs are lightweight and
exhibit much greater resistance to high temperatures and aggressive environments than metals or other conventional
engineering materials. They consist of ceramic or carbon matrix reinforced with continuous ceramic or carbon fibers.
Their mechanical behavior displays several typical features that differentiate them from the other composites (such as
polymer matrix composites and metal matrix composites) and from the homogeneous (monolithic) materials. These
features depend on fiber and matrix properties, composite microstructure, interfaces/interphases, and so on.

CMCs are of great interest as thermostructural materials and were developed initially for military and aerospace
applications. Now they are being introduced into many other new fields and their range of applications will grow
when production cost is drastically reduced. Potential applications include heat exchangers, heat engines, gas turbines,
structural components for the aerospace industry, nuclear reactors, chemical industries, automotive industry, biological
implants, and so on.

Several approaches are available for processing of CMCs, using liquid, gaseous, or solid precursors. The chemical
vapor infiltration (CVI) technique fostered the development of CMCs. The continuous fiber-reinforced CMCs followed
the development of C/C composites and the CVI manufacturing technique. Development of CVI SiC/SiC composites
began in the 1980s when SEP (now SNECMA), Amercorm, Refractory Composites, and others began to develop equip-
ment and processes for producing CMC components for aerospace, defense, and other applications. SNECMA was
at the forefront of this technology and demonstrated satisfactory performance of various CVI SiC/SiC components in
turbine engine and flight tests. A number of CVI SiC/SiC components have performed successfully in turbine engines or
full-scale tests.

The CVI technique has been studied since the 1960s, as an extension of chemical vapor deposition (CVD) technol-
ogy. CVD involves the deposition of a solid on a heated substrate, from gaseous precursors. It has been used for many
years to produce wear resistant coatings, coatings for nuclear fuels, thin films for electronic circuits, ceramic fibers, and
so on. When the CVD technique is used to impregnate rather large amounts of matrix materials in fibrous preforms, it
is called chemical vapor impregnation or infiltration. CVI was first used for the fabrication of carbon—carbon composites
via pyrolysis of CH4 at 1000-2000°C. Carbon—carbon (C/C) composites display several advantageous properties (such
as low density and good mechanical properties at high temperatures). However, it was realized ca. 1973 that applications
of C/C composites would be limited because of their poor oxidation resistance at temperatures higher than 450°C.
SiC matrix composites were considered to be a solution to overcome the above shortcoming of C/C composites for
long service life at elevated temperatures in oxidative environments. The feasibility of CVI SiC matrix composites was
established in 1977 and confirmed independently in 1978. CVI SiC matrix composites reinforced by SiC fibers were
manufactured in 1980. The current CVI SiC/SiC composites exhibit excellent performance in extreme environments at
elevated temperatures. In the meantime, alternative manufacturing methods have been devised such as melt infiltration
(M), polymer infiltration and pyrolysis (PIP), and hybrid approaches which are a combination of CVI and other methods.

During the past 30 years, tremendous progress has been made in CMC developments. A large amount of knowledge
has been acquired, and numerous processing/microstructure/property data have been produced. Results and state-of-
the-art at a certain point in time were discussed in published conference proceedings, journal articles, and a few books.
However, since we have entered the new millennium, the CMCs have reached maturity for use in systems working
at high temperatures. They have now reached a high level of technological development. The issues have moved from
processing methods and basic characteristics to stability at high temperatures in aggressive environments, life of material
and components, predictive models, and simulation.

Among the features of long fiber-reinforced composites that have to be capitalized, versatility is quite important.
For this purpose, characteristics and behavior of constituents have to be considered. The performance of primary
constituents requires further and full consideration. From this point of view, the fibers, the interfaces/interphases, the
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reinforcing preforms, and the matrices are key elements. Some efforts have been devoted to multiscale approaches
to thermostructural behavior, including (i) bottom-up approaches to establish microstructure/property relations with
a view to a complete approach integrating processing/microstructure/property relations and (ii) top-down approaches
for component simulations.

In this book, opportunity was given to international specialists to produce a comprehensive review of recent devel-
opments in their field of expertise. They were encouraged to discuss state-of-the-art knowledge on the following topics
related to CMCs:

® Behavior and properties of constituents: fibers (including single filaments and tows), fiber/matrix interfaces and
interphases, and preforms. (Chapters [-4)

® Carbon/carbon, C/SiC, C/C-SiC, SiC/SiC, oxide/oxide, and ultrahigh temperature ceramic-based composites:
manufacturing methods, properties, technology development, and recent advances for major continuous fiber-
reinforced composite systems. (Chapters 5-9)

® Environmental effects, including effects of steam on high temperature performances of oxide/oxide composites,
stress-oxidation degradation in SiC-based composites, thermomechanical ablation, radiation effects on SiC-based
and carbon fiber composites, and foreign object damage. (Chapters 10-14)

® Protective coatings against surface recession in SiC/SiC and oxidation of ultrahigh temperature composites.
(Chapters 15 and 16)

® Multiscale modeling of material behavior and computational simulation of life of engineering structures. (Chapters
17 and 18)

® |ntegration and joining of CMCs and mechanical testing of joined structures. (Chapter 19)

® Acoustic emission—based detection and quantification of damage with a view to life prediction. (Chapter 20)

e Applications of CMCs in key sectors including aeronautics, space, and nuclear plants. (Chapters 21-23; also
Chapters 5, 6, 7, and 8)

The editors hope that this book will spark interest in the ceramic composite design and development communities
and within other organizations that relate to these activities. Universities that educate future engineers who will be
working with these complex materials will find much that is valuable and intellectually challenging.

The authors are fully responsible for the material presented in their chapters and they deserve the credit also. The
editors are greatly indebted to them for their hard work and dedication in presenting their material in a timely fashion.
Thanks are due to Ms. Anita Lekhwani, Senior Acquisitions Editor for Chemistry, Biotechnology, and Materials Science,
John Wiley & Sons, Inc., for her cooperation and understanding during the publication of this book.

NAROTTAM BANSAL
JAcQuEs LaMON
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