PASCAL wcon

Programming and Problem Solving -
SANFORD LEESTMA /LARRY NYHOFF

SANFORD LEESTMA
LARRY NYHOFF

Department of Mathematics and Computer Science

PASCAL

Programming and
Problem Solving

SECOND EDITION

Macmillan Publishing Company
NEW YORK

Collier Macmillan Publishers
LONDON

Copyright © 1987, Macmillan Publishing Company, a division of Macmillan, Inc.

Printed in the United States of America

All nghts reserved No part of this book may be reproduced or
transmitted 1n any form or by any means electronic or mechanical.
including photocopying recording or any information storage and
retrieval system without permission 1n writing from the publisher.

Earher edition copyright © 1984 by Macmillan Publishing Company.

Macmullan Publishing Company
866 Third Avenue New York, New York 10022

Collier Macmillan Canada Inc
Library of Congress Cataloging 1n Publication Data

Leestma Sanford
Pascal programming and problem solving

Includes index.

1. PASCAL (Computer program language) 1. Nyhoff,
Larry R. 1I. Title.
QA76.73.P2L.44 1987 005.13'3 86-21692
ISBN 0-02-369690-7

Printing: 678 Year: 9012345

ISBN 0-02-3k9690-7

PREFACE

Pascal was developed in the late 1960s and early 1970s by Niklaus Wirth, a
Swiss computer scientist at the Eidgendssische Technishe Hochshule (ETH) in
Zurich, Switzerland. His primary goal was to develop a language that makes
it possible ‘‘to teach programming as a systematic discipline based on certain
fundamental concepts clearly and naturally reflected by the language.”” The
Pascal User Manual and Report, written by Wirth and K. Jensen and published
in 1974, serves as the basic definition of the Pascal language. As the use of
Pascal grew, some differences appeared in various implementations. To ensure
that Pascal programs written on one system can be executed on another, national
and international standards for the language have been formulated. A recent
standard is An American National Standard IEEE Standard Pascal Computer
Programming Language, which was published in 1983 by Institute of Electrical
and Electronics Engineers (IEEE). This standard was approved by the IEEE
Standards Board and the American National Standards Institute (ANSI) and
serves as the basis for this text. Differences between this standard and other
popular versions of Pascal are described in brief sections at the ends of appro-
priate chapters and in Appendix G.

This text is a complete introduction to the Pascal programming language
and is designed to meet the objectives of the course CSI: Introduction to
Programming Methodology as described in the Curriculum ’84 recommenda-
tions of the Association of Computing Machinery (ACM). The course objec-
tives as described in this curriculum guideline are (cf. ‘‘Recommended Curric-
ulum for CS1, 1984, Communications of the ACM, October, 1984):

® to introduce a disciplined approach to problem-solving methods and
algorithm development;

® to introduce procedural and data abstraction;

® to teach program design, coding, debugging, testing, and documentation
using good programming style;

® to teach a block-structured high-level programming language;

® to provide a familiarity with the evolution of computer hardware and
software technology;

® to provide a foundation for further studies in computer science.

To meet these objectives, this text emphasizes problem solving using structured
algorithm and program design throughout and illustrates these with a large
number of complete examples and applications, many of which include algo-

v

Preface

rithms given in pseudocode and/or structure diagrams, complete Pascal pro-
grams implementing the algorithms, and sample runs. Each of the examples is
intended to demonstrate good algorithm design and programming style. At the
end of each chapter a Programming Pointers section summarizes the main points
regarding structure and style as well as language features presented and some
problems that beginning programmers may experience. In addition to presenting
the basic features of Pascal, the text introduces such topics as data represen-
tation, machine language, and compilers, and the last two chapters introduce
some elementary data structures, such as stacks, queues, linked lists, and trees.

Like the first edition, this text is intended for an introductory computer
programming course using Pascal. Thus, the level is the same as that of the
first edition, with the intended audience being freshman and/or sophomore
college students whose mathematical background includes high school algebra.
The first edition was written for the course CS1 as described in the Curriculum
'78 guidelines of the ACM. A new course description appeared in 1984, how-
ever, and the new text has been carefully revised to implement these recom-
mendations. We have also benefited from constructive comments of instructors
and students who used the first edition and we have incorporated many of these
suggestions in this second edition. Specifically, the changes in the new edition
include the following:

® Procedures are introduced earlier in the text (before functions). The
discussion of scope rules is simplified, and more difficult and less fre-
quently used material has been relegated to an appendix. The introduc-
tion to recursion is expanded and improved.

® More examples and exercises from nonmathematical applications have
been included.

® Material in Chapter 4 has been reorganized so that selection structures
are considered before repetition structures; in the case of the latter, while
and repeat statements are considered before the for statement.

o Introduction to data structure design and algorithm analysis (Chapters
13 and 14) has been improved.

® Presentation of structured data types has been improved with a new
introduction to and better examples of multidimensional arrays in Chap-
ter 9, consideration of records before sets in Chapters 10 and 11, and
a simplified treatment of files in Chapter 12.

® The discussion of problem solving and algorithm development in Chap-
ter 2 has been expanded, and additional material on testing and debug-
ging has been included in Chapter 4. More structure diagrams have been
used to display the structure of more complicated programs.

@ The discussion of data representation and other basic concepts of com-
puter systems (including machine language, assembly language, and
compilers) in Chapter 1 has been expanded so that it conforms to the
CS1 guidelines.

e A second color has been used to highlight important concepts and to
improve readability.

@ Brief sections describing common variations of and extensions to standard
Pascal have been added at the ends of chapters where appropriate.

Preface VH

® A new appendix details these variations and extensions as implemented
in Macintosh™ Pascal Turbo Pascal™, and UCSD"™ Pascal.

Revised and expanded supplementary materials available from the publisher
include the following:

® An instructor’s manual containing lecture notes, solutions to exercises,
sample test questions, and transparency masters.

® Data disks containing all the sample programs and data files used in the
text. Standard Pascal and Turbo Pascal versions are available.

® A test bank and test generation software for microcomputers.

Acknowledgments

We express our appreciation to all those who were involved in the preparation
of this text: to our colleagues who have used this material in their classes and
whose suggestions have strengthened the presentation; to our students, who
have served as test subjects; to David Johnstone, Ron Harris, and all other
Macmillan personnel who initiated, supervised, produced. or in some other
way contributed to the finished product; to the several reviewers of the manu-
script, whose comments were encouraging, helpful, and sincerely appreciated;
and to Marge, Michelle, Sandy, Michael, Shar, Jeff, Dawn, Jim, Julie, and
Joan, whose patience, love, support, and understanding during the preparation
of this text and others has exceeded what we have any right to expect.

S.C.L.
L.R.N.

CONTENTS

2.1
2.2
2.3
24
2.5

3.3
34
3.5
3.6

3.7
3.8

Introduction and History 1

History of Computing Systems 1
Computing Systems 12

Internal Representation 13
Exercises 21

Program Development 25

Problem Analysis and Specification 25
Algorithm Development 27

Program Coding 35

Program Execution and Testing 39
Software Engineering 42

Exercises 47

Basic Pascal 50

From Algorithms to Programs 51
Data Types 51

Exercises 56

Arithmetic Operations and Functions 57
Exercises 60

The Assignment Statement 61
Exercises 66

Input/Output 67

Exercises 77

Program Composition 80

Example: Truck Fleet Accounting 81
Syntax Diagrams 83

Exercises 86

Programming Pointers 89
Variations and Extensions 93

Contents

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8

5.3
5.4

5.5
5.6

5.7

Control Structures

Sequential Structure: Compound Statements;
begin and end 94

The Boolean Data Type 96

Exercises 101

Selection Structure: The if Statement 102

Multialternative Selection Structure: if-else if Constructs

and the case Statement 109
Exercises 114
Repetition Structure: The while Statement 117
Repetition Structure: The repeat Statement 122
Repetition Structure: The for Statement 125
Program Testing and Debugging Techniques:

An Example 131
Exercises 136
Programming Pointers 142
Variations and Extensions 150

Procedures and Functions

Procedures 152

Example of Modular Programming: Menu-Driven
Checkbook-Balancing Program 162

Exercises 169

Functions 172

Exercises 177

Examples: Numerical Integration, Simulation 181

Exercises 185

Scope Rules 188

Example of Top-Down Design: Determining Eligibility

Exercises 212

Introduction to Recursion 213

Exercises 221

Programming Pointers 222

Variations and Extensions 225

Input/Output

Input/Output Procedures 226

Exercises 235

Introduction to Text Files; the eof and eoln Functions
Exercises 250

Programming Pointers 254

Variations and Extensions 258

196

237

Ordinal Data Types: Enumerated and Subrange

The Type Section 261
Enumerated Data Types 263

9

151

226

260

Contents

xi

1.3

9.2
9.3
9.4

10

10.1
10.2
10.3
10.4

10.5
10.6

11

11.1
11.2
11.3
11.4

Subrange Data Types 271
Exercises 273

Programming Pointers 274
Variations and Extensions 275

One-Dimensional Arrays

Introduction to Arrays; Indexed Variables 276

List Processing Using One-Dimensional Arrays 281
Applications: Class Averages, Sorting, Searching 291
Exercises 305

String Processing 311

Application: Text Editing 321

Exercises 327

Programming Pointers 333

Variations and Extensions 334

Multidimensional Arrays

Introduction to Multidimensional Arrays; Multiply
indexed Variables 341

Processing Multidimensional Arrays 346

Application to String Processing 352

Numeric Applications: Automobile Sales, Matrix
Multiplication, Inventory Control 356

Exercises 370

Programming Pointers 378

Variations and Extensions 380

Records

Introduction to Records and Fields 381

Processing Records 385

The with Statement 391

Application: Grading on the Curve and Sorting
an Array of Records 397

Variant Records 405

Application: Information Retrieval 410

Exercises 414

Programming Pointers 418

Variations and Extensions 421

Sets

Set Declarations, Set Constants, Set Assignment 423
Set Operations and Relations 426
Processing Sets 431
Applications: Sieve of Eratosthenes, Simple
Lexical Analyzer 435

276

340

381

422

Xii

Contents
Exercises 442
Programming Pointers 444
Variations and Extensions 445
12 Files 446
12.1 Review of Text Files 447
12.2 Files of Other Types 448
12.3 Application: Updating a File 464
Exercises 468
Programming Pointers 472
Variations and Extensions 473
13 Pointers and Linked Lists 477
13.1 Pointers; The Procedure new and dispose 478
13.2 Introduction to Linked Lists 484
13.3 Processing Unordered Linked Lists 490
13.4 Ordered Linked Lists 495
Exercises 505
Programming Pointers 508
Variations and Extensions 512
14 Data Structures and Algorithms 513
14.1 Stacks and Queues 514
14.2 Application of Stacks: Reverse Polish Notation 523
Exercises 532
14.3 Evaluating Data Structures and Algorithms 534
Exercises 541
14.4 Quicksort 542
Exercises 550
14.5 Mergesort 551
Exercises 560
14.6 Multiply Linked Structures: Trees 561
Exercises 575
A ASCII and EBCDIC 583
B Reserved Words, Standard Identifiers,
and Operators 587
C Syntax Diagrams 590
D Predefined Functions and Procedures 602
E Sample Data Files 604

Contents Xiii
F Miscellany 614

G Other Versions of Pascal 625

H Answers to Selected Exercises 638
Glossary 656

Index of Examples and Exercises 667

Index

675

Introduction
and History

1.1

I wish these calculations had been executed by steam.

CHARLES BABBAGE

For, contrary to the unreasoned opinion of the ignorant, the choice of a
system of numeration is a mere matter of convention.

BLAISE PASscAL

The modern electronic computer is one of the most important products of the
twentieth century. It is an essential tool in many areas, including business,
industry, government, science, and education; indeed, it has touched nearly
every aspect of our lives. The impact of this twentieth-century information
revolution brought about by the development of high-speed computing systems
has been nearly as widespread as the impact of the nineteenth-century industrial
revolution. This chapter gives a summary of the history of computer systems
and briefly describes their components.

History of Computing Systems

There are two important concepts in the history of computation: the mecha-
nization of arithmetic and the concept of a stored program for the automatic
control of computations. We shall focus our attention on some of the devices
that have implemented these concepts.

A variety of computational devices were used in ancient civilizations. One
of the earliest, which might be considered a forerunner of the modern computer,
is the abacus (Figure 1.1), which has movable beads strung on rods to count
and make computations. Although its exact origin is unknown, the abacus was
used by the Chinese perhaps three to four thousand years ago and is still used
today.

Introduction and History

Figure 1.1
Abacus.

The ancient British stone monument Stonehenge (Figure 1.2a), located in
southern England, was built between 1900 and 1600 B.C. and evidently was
an astronomical calculator used to predict the changes of the seasons. Five
hundred years ago, the Inca Indians of South America used a system of knotted
cords called quipus (Figure 1.2b) to count and record divisions of land among
the various tribal groups. In Western Europe, Napier’s bones (Figure 1.2¢) and
tables of logarithms were designed by the Scottish mathematician John Napier
(1550-1617) to simplify calculations. These led to the subsequent invention of
the slide rule (Figure 1.2d).

In 1642, the young French mathematician Blaise Pascal (1623-1662) in-
vented one of the first mechanical adding machines (Figure 1.3). This device
used a system of gears and wheels similar to that used in odometers and other
modern counting devices. Pascal’s adder could both add and subtract, and was
invented to calculate taxes. Pascal’s announcement of his invention reveals the
labor-saving motivation for its development:

Dear reader. this notice will serve to inform you that I submit to the public
a small machine of my invention, by means of which you alone may, without
any effort, perform all the operations of arithmetic, and may be relieved of
the work which has often times fatigued your spirit, when you have worked
with the counters or with the pen. As for simplicity of movement of the
operations, I have so devised it that, although the operations of arithmetic
are in a way opposed the one to the other—as addition to subtraction, and
multiplication to division—nevertheless they are all performed on this ma-

Figure 1.2. (a) Stonehenge. (b) Quipus (Courtesy of the American Museum of
Natural History). (c) Napier's bones (Courtesy of the Smithsonian Institution). (d)

Slide rule.
3

Introduction and History

Figure 1.3. Pascal’s adder. (Courtesy of IBM.)

chine by a single movement. The facility of this movement of operation is
very evident since it is just as easy to move one thousand or ten thousand
dials, all at one time, if one desires to make a single dial move, although all
accomplish the movement perfectly. The most ignorant find as many advan-
tages as the most experienced. The instrument makes up for ignorance and
for lack of practice, and even without any effort of the operator, it makes
possible shortcuts by itself, whenever the numbers are set down.

Although Pascal built more than fifty of his adding machines, his commercial
venture failed because the devices could not be built with sufficient precision
for practical use.

In the 1670s, the German mathematician Gottfried Wilhelm von Leibniz
(1646-1716) produced a machine that was similar in design to Pascal’s, but
somewhat more reliable and accurate (Figure 1.4). Leibniz’s calculator could

Figure 1.4. Leibniz's calculator. (Courtesy of IBM.)

1.1 History of Computing Systems 5

perform all four of the basic arithmetic operations: addition, subtraction, mul-
tiplication, and division.

A number of other mechanical calculators followed that further refined the
designs of Pascal and Leibniz. By the end of the nineteenth century, these
calculators had become important tools in science, business, and commerce.

As noted earlier, the second idea to emerge in the history of computing
was the concept of a stored program to control the calculations. One early
example of an automatically controlled device is the weaving loom (Figure 1.5)
invented by the Frenchman Joseph Marie Jacquard (1752-1834). This auto-
matic loom, introduced at a Paris exhibition in 1801, used metal cards punched
with holes to position threads for the weaving process. A collection of these
cards made up a program that directed the loom. Within a decade, 1 1,000 of
these machines were in use in French textile plants, resulting in what may have
been the first incidence of unemployment caused by automation. Unemployed
workers rioted and destroyed several of the new looms and cards. Jacquard
wrote: ““The iron was sold for iron, the wood for wood, and I its inventor
delivered up to public ignominy.”” The Jacquard loom is still used today,
although modern versions are controlled by magnetic tape rather than punched
cards.

Figure 1.5.
Jacquard loom. (Courtesy of IBM.)

!

]

e e

4 A

| A A A

='——.-—_-:'

: tom, (o o}

(a)

i !“L A
() 54 ‘ =

Figure 1.6. (a) Babbage's Difference Engine. (b) Babbage’'s Analytical Engine.
(Courtesy of IBM.)

