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Preface

The subject of Finite Elasticity (or Nonlinear Elasticity), although many of its
ingredients were available much earlier, really came into its own as a discipline
distinct from the classical theory of linear elasticity as a result of the impor-
tant developments in the theory from the late 1940s associated with Rivlin and
the collateral developments in general Continuum Mechanics associated with
the Truesdell school during the 1950s and 1960s. Much of the impetus for the
theoretical developments in Finite Elasticity came from the rubber industry be-
cause of the importance of (natural) rubber in many engineering components,
not least car tyres and bridge and engine mountings. This impetus is main-
tained today with an ever increasing use of rubber (natural and synthetic) and
other polymeric materials in a broader and broader range of engineering prod-
ucts. The importance of gaining a sound theoretically-based understanding of
the thermomechanical behaviour of rubber was only too graphically illustrated
by the role of the rubber O-ring seals in the Challenger shuttle disaster. This
extreme example serves to underline the need for detailed characterization of
the mechanical properties of different rubberlike materials, and this requires
not just appropriate experimental data but also the rigorous theoretical frame-
work for analyzing those data. This involves both elasticity theory per se and
extensions of the theory to account for inelastic effects.

Over the last few years the applications of the theory have extended beyond
the traditional regime of rubber mechanics and they now embrace other ma-
terials capable of large elastic strains. These include, in particular, biological
tissue such as skin, arterial walls and the heart. This is an important new
development and it is increasingly recognized by medical researchers and clin-
icians that understanding of the mechanics of such tissue is of fundamental
importance in developing improved intervention treatments (such as balloon
angioplasty) and artificial replacement parts.

While understanding of Finite Elasticity is in itself important the theory also
provides a gateway towards the understanding of more complex (non-elastic)
material behaviour in the large deformation regime, such as finite deformation
plasticity and nonlinear viscoelasticity, and it has an underpinning role in such
theories.

Additionally, because of its intrinsic nonlinearity, the equations of Finite
Elasticity provide a rich basis for purely mathematical studies in, for example,
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X Preface

nonlinear analysis. Indeed, developments, in particular in the theory of partial
differential equations, have been stimulated by work in Finite Elasticity, and
these mathematical developments in turn have had an influence on research in
the mechanical aspects of Finite Elasticity. Thus, the subject is wide ranging
in both its theoretical and application perspectives.

The turn of the century is an appropriate time to assess the state of develop-
ment of the subject of Finite Elasticity and its potential for further applications
and further theoretical development. With this in mind this volume aims to
provide an overview of the theory from the perspectives of twelve researchers
who have contributed to the subject over the last few years. It is hoped that
it will provide a foundation and springboard for possible future developments.
The material covered in this volume is necessarily selective and not by any
means exhaustive. Thus, some important topics (such as fracture mechanics
and the mechanics of composite materials) are not addressed. Nevertheless,
there is nothing presently available in the literature that covers such a broad
range of topics within the general framework of Finite/Nonlinear Elasticity
as that presented here. The various chapters combine concise theory with a
number of important applications, and the emphasis is directed more towards
understanding of mechanical phenomena and problem solving rather than de-
velopment of the theory for its own sake.

Different chapters deal with, on the one hand, a number of classical research
directions concerned with, for example, exact solutions, universal relations and
the effect of internal constraints, and, on the other hand, with recent devel-
opments associated with phase transitions and pseudo-elasticity. New ideas
from nonlinear analysis, such as nonlinear bifurcation analysis and dynamical
systems theory are also featured.

Chapter 1 provides the basic theory required for use in the other chapters.
Chapters 2-6 deal with different aspects of the solution of boundary-value prob-
lems for unconstrained and internally constrained materials, while Chapters 7
and 8 are concerned with the related topics of membrane theory and the theory
of elastic surfaces. Chapter 9 deals with the important topic of non-uniqueness
of solution using the tools of singularity theory and bifurcation theory and
Chapter 10 examines some related aspects concerned with nonlinear stabil-
ity analysis based on methods of perturbation theory. Nonlinear dynamics
is discussed in Chapter 11, which is concerned with nonlinear wave propaga-
tion in an elastic rod. Chapters 12 and 13 are based on different notions of
pseudo-elasticity theory: Chapter 12 develops a theory of phase transitions us-
ing non-convex strain-energy functions, while Chapter 13 is concerned with the
effect of changing the (elastic) constitutive law during the deformation process.

Most of the contributors to this volume participated in an International
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Workshop on Nonlinear Elasticity held at City University, Hong Kong, in April
2000. Whilst the chapters in this volume do not form the proceedings of that
Workshop it is important to emphasize that this volume and the Workshop
were planned in parallel and that the Workshop served to focus ideas for the
volume. We are pleased to acknowledge the generous support for the Workshop
from the Liu Bie Ju Centre for Mathematical Sciences, City University of Hong
Kong, and the personal support and encouragement of Professor Roderick S.
C. Wong, Director of the Centre. We are very grateful to all the contributors
for their enthusiastic response to this project and for the timely production of
their chapters.

Y.B. Fu
R.W. Ogden
December 2000
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'Elements of the theory of finite
elasticity

R.W. Ogden

Department of Mathematics
University of Glasgow, Glasgow G12 8QW, U.K.
Email: rwo@maths.gla.ac.uk

In this chapter we provide a brief overview of the main ingredients of the
nonlinear theory of elasticity in order to establish the basic background material
as a reference source for the other, more specialized, chapters in this volume.

1.1 Introduction

In this introductory chapter we summarize the basic equations of nonlinear
elasticity theory as a point of departure and as a reference source for the other
articles in this volume which are concerned with more specific topics.

There are several texts and monographs which deal with the subject of non-
linear elasticity in some detail and from different standpoints. The most impor-
tant of these are, in chronological order of the publication of the first edition,
Green and Zerna (1954, 1968, 1992), Green and Adkins (1960, 1970), Truesdell
and Noll (1965), Wang and Truesdell (1973), Chadwick (1976, 1999), Marsden
and Hughes (1983, 1994), Ogden (1984a, 1997), Ciarlet (1988) and Antman
(1995). See also the textbook by Holzapfel (2000), which deals with viscoelas-
ticity and other aspects of nonlinear solid mechanics as well as containing an
extensive treatment of nonlinear elasticity. These books may be referred to for
more detailed study. Subsequently in this chapter we shall refer to the most re-
cent editions of these works. The review articles by Spencer (1970) and Beatty
(1987) are also valuable sources of reference.

Section 1.2 of this chapter is concerned with laying down the basic equa-
tions of elastostatics and it includes a summary of the relevant geometry of
deformation and strain, an account of stress and stress tensors, the equilibrium
equations and boundary conditions and an introduction to the formulation of
constitutive laws for elastic materials, with discussion of the important notions
of objectivity and material symmetry. Some emphasis is placed on the spe-
cial case of isotropic elastic materials, and the constitutive laws for anisotropic

1



2 R.W. Ogden

material consisting of one or two families of fibres are also discussed. The mod-
ifications to the constitutive laws when internal constraints such as incompress-
ibility and inextensibility are present are provided. The general boundary-value
problem of nonlinear elasticity is then formulated and the circumstances when
this can be cast in a variational structure are discussed briefly.

In Section 1.3 some basic examples of boundary-value problems are given.
Specifically, the equations governing some homogeneous deformations are high-
lighted, with the emphasis on incompressible materials. Other chapters in this
volume will discuss a range of different boundary-value problems involving non-
homogeneous deformations so here we focus attention on just one problem as
an exemplar. This is the problem of extension and inflation of a thick-walled
circular cylindrical tube. The analysis is given for an incompressible isotropic
elastic solid and also for a material with two mechanically equivalent symmet-
rically disposed families of fibres in order to illustrate some differences between
isotropic and anisotropic response.

The (linearized) equations of incremental elasticity associated with small de-
formations superimposed on a finite deformation are summarized in Section
1.4. The incremental constitutive law for an elastic material is used to iden-
tify the (fourth-order) tensor of elastic moduli associated with the stress and
deformation variables used in the formulation of the governing equations, and
explicit expressions for the components of this tensor are given in the case of
an isotropic material. For the two-dimensional specialization, necessary and
sufficient conditions on these components for the strong ellipticity inequalities
to hold are given for both unconstrained and incompressible materials. A brief
discussion of incremental uniqueness and stability is then given in the context
of the dead-load boundary-value problem and the associated local inequalities
are given explicit form for an isotropic material, again for both unconstrained
and incompressible materials. A short discussion of global aspects of non-
uniqueness for an isotropic material sets the incremental results in a broader
context.

In Section 1.5 the equations of incremental deformations and equilibrium
given in Section 1.4 are specialized to the plane strain context in order to
provide a formulation for the analysis of incremental plane strain boundary-
value problems. Specifically, we provide an example of a typical incremental
boundary-value problem by considering bifurcation of a uniformly deformed
half-space from a homogeneously deformed configuration into a non-homogene-
ous local mode of deformation. An explicit bifurcation condition is given for this
problem and the results are illustrated for two forms of strain-energy function.

Finally, in Section 1.6 we summarize the equations associated with the (non-
linear) dynamics of an elastic body at finite strain. The (linearized) equations
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for small motions superimposed on a static finite deformation are then given
and these are applied to the analysis of plane waves propagating in a homoge-
neously deformed material.

References are given throughout the text but these are not intended to pro-
vide an exhaustive list of original sources. Where appropriate we mention
papers and books where more detailed citations can be found. Also, where a
topic is to be dealt with in detail in one of the other chapters of this volume
the appropriate citations are included there.

1.2 Elastostatics

In this section we summarize the basic equations of the static theory of non-
linear elasticity, including the kinematics of deformation, the analysis of stress
and the governing equations of equilibrium, and we introduce the various forms
of constitutive law for an elastic material, including a discussion of isotropy and
anisotropy. We then formulate the basic boundary-value problem of nonlinear
elasticity. The development here is a synthesis of the essential material taken
from the book by Ogden (1997) with some minor differences and additions.

1.2.1 Deformation and strain

We consider a continuous body which occupies a connected open subset of a
three-dimensional Euclidean point space, and we refer to such a subset as a
configuration of the body. We identify an arbitrary configuration as a reference
configuration and denote this by B,. Let points in B, be labelled by their
position vectors X relative to an arbitrarily chosen origin and let 3B, denote
the boundary of B,. Now suppose that the body is deformed quasi-statically
from B, so that it occupies a new configuration, B say, with boundary dB. We
refer to B as the current or deformed configuration of the body. The deformation
is represented by the mapping x : B, — B which takes points X in B, to points
x in B. Thus,

x = x(X), XeB, (2.1)

where x is the position vector of the point X in B. The mapping x is called
the deformation from B, to B. We require x to be one-to-one and we write its
inverse as x 1, so that

X =x"1(x), x € B. (2.2)



4 R.W. Ogden

Both x and its inverse are assumed to satisfy appropriate regularity conditions.
Here, it suffices to take x to be twice continuously differentiable, but different
requirements may be specified in other chapters of this volume.

For simplicity we consider only Cartesian coordinate systems and let X and
x respectively have coordinates X, and z;, where o, i € {1,2,3}, so that
z; = Xi(Xq). Greek and Roman indices refer, respectively, to B, and B and
the usual summation convention for repeated indices is used.

The deformation gradient tensor, denoted F, is given by

F = Gradx (2.3)

and has Cartesian components Fi, = 9z;/8X,, Grad being the gradient op-
erator in B,. Local invertibility of x requires that F be non-singular, and we
adopt the usual convention that det F > 0. Similarly, for the inverse deforma-
tion gradient

Fl=gradX, (F Y= aﬁ, (2.4)
ozx;

where grad is the gradient operator in B. With use of the notation defined by
J=detF (2.5)

we then have
0<J <00 (2.6)

The equation

dx = FdX (2.7)

(in components dz; = F;,dX,) describes how an infinitesimal line element dX
of material at the point X transforms linearly under the deformation into the
line element dx at x.

We now set down how elements of surface area and volume transform. Let
dA = NdA denote a vector surface area element on dB,, where N is the unit
outward normal ['to the surface, and da = nda the corresponding area element
on 9B. Then, the area elements are connected according to Nanson’s formula

nda = JF-TNdA, (2.8)

where F~T = (F~1)T and 7 denotes the transpose. Note that, unlike a line
element, the normal vector is not embedded in the material, i.e. n is not in
general aligned with the same line element of material as N.

If dV and dv denote volume elements in B, and B respectively then we also
have

dv = Jav. (2.9)
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For a volume preserving (isochoric) deformation we have
J=detF =1. (2.10)

A material for which (2.10) is constrained to be satisfied for all deformation
gradients F is said to be incompressible.
The identities

Div(JF 1) =0, div(J"!F)=0 (2.11)

are important tools in transformations between equations associated with the
reference and current configurations, where Div and div are the divergence
operators in B, and B respectively. The first identity in (2.11) can readily
be established by integrating (2.8) over an arbitrary closed surface in B and
applying the divergence theorem and the second similarly by integrating NdA
over an arbitrary closed surface in B,.

From (2.7) we have

|dx|* = (FM) - (FM) |dX|*> = (FTFM) - M |dX?, (2.12)

where we have introduced the unit vector M in the direction of dX and -
signifies the scalar product of two vectors. Then, the ratio |dx|/|dX| of the
lengths of a line element in the deformed and reference configurations is given
by

ldx| _ _ T 1/2 —

——IdXI = |[FM| = [M - (F FM)]'/? = A\(M). (2.13)
Equation (2.13) defines the stretch A(M) in the direction M at X, and we note
that it is restricted according to the inequalities

0<A(M) < co. (2.14)
If there is no stretch in the direction M then A(M) = 1 and hence
(FTFM)-M = 1. (2.15)

If there is no stretch in any direction, i.e. (2.15) holds for all M, then the
material is said to be unstrained at X, and it follows that FTF = I, where I is
the identity tensor. A suitable tensor measure of strain is therefore FTF — I
since this tensor vanishes when the material is unstrained. This leads to the
definition of the Green strain tensor

E= %(FTF -1), (2.16)

where the 1/2 is a normalization factor. If, for a given M, equation (2.15) holds
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for all possible deformation gradients F then the considered material is said to
be inextensible in the direction M.
The deformation gradient can be decomposed according to the polar decom-
positions
F=RU=VR, (2.17)

where R is a proper orthogonal tensor and U, V are positive definite and sym-
metric tensors. Each of the decompositions in (2.17) is unique. Respectively,
U and V are called the right and left stretch tensors.

These stretch tensors can also be put in spectral form. For U we have the
spectral decomposition

3
U=) rxueu®, (2.18)
i=1
where A; > 0, i € {1,2, 3}, are the principal stretches, u(*, the (unit) eigenvec-
tors of U, are called the Lagrangian principal azes and ® denotes the tensor
product. Note that A(u{?) = ); in accordance with the definition (2.13). Sim-
ilarly, V has the spectral decomposition

3
V= z Av® @ v, (2.19)
=1
where
v =Ru®, ie{1,2,3}. (2.20)

It follows from (2.5), (2.17) and (2.18) that
J = /\1/\2/\3. (2.21)

Using the polar decompositions (2.17) for the deformation gradient F, we
may also form the following tensor measures of deformation:

C=FTF=U?  B=FFT=V2 (2.22)

These define C and B, which are called, respectively, the right and left Cauchy-
Green deformation tensors.

More general classes of strain tensors, i.e. tensors which vanish when there
is no strain, can be constructed on the basis that U = I when the material is
unstrained. Thus, for example, we define Lagrangian strain tensors

E™ = %(Um ~1), m#0, (2.23)

E® =nU, m=0, (2.24)
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where m is a real number (not necessarily an integer). Eulerian strain tensors
based on the use of V may be constructed similarly. See, for example, Doyle
and Ericksen (1956), Seth (1964) and Hill (1968, 1970, 1978). Note that for
m = 2 equation (2.23) reduces to the Green strain tensor (2.16). For discussion
of the logarithmic strain tensor (2.24) we refer to, for example, Hoger (1987).

Let p, and p be the mass densities in B, and B respectively. Then, since
the material in the volume element dV is the same as that in dv the mass is
conserved, i.e. pdv = p,dV, and hence, from (2.9), we may express the mass
conservation equation in the form

pr = plJ. (2.25)

1.2.2 Stress tensors and equilibrium equations

The surface force per unit area (or stress vector) on the vector area element da
is denoted by t. It depends on n according to the formula

t = o7n, (2.26)

where o, a second-order tensor independent of n, is called the Cauchy stress

tensor.
By means of (2.8) the force on da may be written as

tda = STNdA4, (2.27)
where the nominal stress tensor S is related to o by
S =JFlo. (2.28)

The first Piola-Kirchhoff stress tensor, denoted here by =, is given by w = ST
and this will be used in preference to S in some parts of this volume.

Let b denote the body force per unit mass. Then, in integral form, the
equilibrium equation for the body may be written with reference either to B or
Br. Thus,

/ pbdv + / oTnda = / prbdV + STNdA = 0. (2.29)
B LY. B, 3B,
On use of the divergence theorem equations (2.29) yield the equivalent equi-
librium equations
dive + pb =0, (2.30)
DivS + p,b =0, (2.31)

where again div and Div denote the divergence operators in B and B, respec-
tively. The derivation of the pointwise equations (2.30) and (2.31) requires



