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Preface

The unified theory of electrical machines was developed in 1934 by
Gabriel Kron. His fundamental step in building this theory was to con-
sider machines as systems of inductively coupled coils and to relate each
machine to a basic primitive form. This technique involved first, the idea
of a group or family of machines, second the transformation of quantities
in the primitive machine and third, the invariance of power under trans-
formation. The branch of mathematics required for such a procedure was
already a century old at that time, namely tensor analysis applied to
geometry (and later to dynamics by Synge). Kron developed his own
technique in applying tensors to electrical machines and networks. In
recent years attempts have been made to simplify the generalised theory -
by removing the concepts of tensors, the machine equations being handled
by matrix algebra. The author is of the opinion that the tensor concepts
should not be lost in a physically obscure matrix process, since it ig the
tensors which apply to all machines in all reference frames. The situation
has been described by Lewis Carroll, in circumstances perhaps not inap-
propriate; ““It’s the same thing you know” said Alice. *‘It’s not the same
thing a bit™ replied the Hatter.

The present book is written to give post-graduate students, lecturers and
rescarch workers in electrical machine dynamics a survey of Kron’s
application of tensors and to describe the methods by which circuits, fields,
and dynamo action are being united in one mathematical discipline.

The author wishes to express his thanks to Professor J. M. Meek of The
University of Liverpool for his interest and encouragement in this work;
to Dr. W. J. Gibbs for many stimulating discussions and most useful
comments and for reading the manuscript; to Dr. Gabriel Kron for his
guidance and support throughout. Thanks are also due to Miss L. N.
Rutledge, who typed the manuscript; to The Institution of Electrical
Engineers for permission to incorporate material previously published in
the Proceedings, and to the Editor, The Beama Journal, for much of the
material in Chapter V; to his colleagues, Dr. C. V. Jones and Dr. A. S.
Aldred, for many a long argument. Dr. Aldred provided the test results
for the cross-field machine. Acknowledgment is also due to the Director,
The Royal Aircraft Establishment, Farnborough, for the analysis and test
results for the permanent magnet alternator and two-machine system, and
to Mr. M. Hancock, B.Sc., and Dr. C. S. Hudson for co-operation in this
project. The latter work was carried out by Dr. M. H. Walshaw of the
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R.A.E. in the laboratories of The University of Liverpool. The example
associated with Fig. 3.2 is used by permission of The Editor, The Matrix
and Tensor Quarterly.

'The author also wishes to acknowledge with thanks the support received
at the outset of this work from the Emeritus Professors P. L. Burns, M.Sc.,
The Queen’s University of Belfast, and F. J. Teago, D.Eng., The University

of Liverpool, and to express his thanks to Edward Arnold Ltd. for their

co-operation and assistance at all stages in the preparation of the book.

J.W. L.
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List of Symbols

The book deals with applications of tensor analysis to several branches
of engineering. It has been found that the equations in each field of
application are more easily distinguished when they are written in the
generally accepted notation and therefore complete standardisation of the
symbols has not been attempted. There is, in fact, no confusion as the
applications of the symbols in each section are self-evident. The following
list gives the groups of symbols used.

(i) Geometrical

w = general curvilinar co-ordinates
f = system metric tensor
i = unit vectors
a, = unitary vectors
s = displacement of a point
F, = physical components of a vector
L = covariant components of a vector
¢ = element of surface area
(ii) Machines
(a) indices
a,b,c = quantities in axes fixed to machine stator and rotor windings
k,n,m = quantities in axes all relatively stationary
«, B,y = quantities in axes fixed or free on the stator, rotating freely
on the rotor )
5t = quantities associated with mechanical rotational effects

(e.g. generated voltage and torque)
u,v,w = quantities in the general equation

(5) symbols
Jow [ €tc. = electrical voltage vectors
x*, x* etc. = electrical variables, the electrical charges in machine

windings
X*(= i%) = electrical current
R,, = resistance matrix
L,. = inductance matrix
Gp = matrix of generated voltage coefficients

x* = mechanical variable

ix
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% = angular velocity of machine rotor

L, (= J) = moment of inertia of rotor

ck = transformation matrix.

Q) = ‘non-holonomic object’ containing functions of c

[«B8,¥] = Christoffel symbol, a connection term containing functions

-of L@
Iy, -= connection term containing functions of L, and Qg ,,
B, = flux density matrix .

(iii) Electromagnetic quantities

E, = = electric field vector
H, = magnetic field vector
B, = flux density
r = open-mesh (junction-pair) current
## = closed-mesh current
J* = current density
D = electric displacement
p = electric charge density
Oy = conductivity components
[ = permeability components
e = permittivity components

(iv) Fluid flow '
P = vector potential (stream functlon, where curl ¢ =pv
v = velocity vector
= vorticity (= curl p~1 curl )
P = density

(v) Elasticity
ad = stress components
€48 = strain components .

= dlsplaoement components

:} ’ = Lamé’s Constants

= foroe vector

" (vi) Neutron diffusion

D = diffusion coefficient

n = neutron density

S = neutron source strength
¢ = neutron flux = nv

\ = neutron velocity
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CHAPTER 1

Determinants and Matrices

1.1 Determinants

The algebraic symbol x implies a range of arithmetical values. The
manipulation of symbols in algebraic processes shows how, ultimately,
any of the implied arithmetical figures will be correlated in a particular
case. In applied mathematics one usually employs symbols throughout
an analysis and then, when the final relationship is established, one investi-
gates the behaviour of the system for a range of numbers. Matrix
algebra® is an extension of this to deal systematically with groups of
several sets of algebraic symbals when the sets are governed by the same
laws simultaneously, the individual symbols having different implied
numerical values. For example, consider the two simultancous linear
equations

= auX + apXy

Ya = Gy Xy + GpXs

.1

. The only. difference between the first and second of these equations is
that they will have different arithmetical values. In matrix algebra the
sets of symbols are grouped into a more compact notation. The equations
(1.1) are written, in matrix notation,

fn=2

Ym = z QunXn (mn=12) (1.2)
n=1

It is found that when an index is repeated (e.g. index ), then summation is
almost always implied, and it is usual to dispense with the corresponding
summation sign and write ' . :
' Ym = CunXy (1‘3)
Various operations of algebra and calculus can be carried out on
matrices such as those shown in equation (1.3). The end result can be
expanded to give the final set of equations, and these can then be investi-
gated numerically. The numerical solution of simultaneous equations is
often carried out by the processes of the theory of determinants,™ of
which a brief summary of the elementary rules is as follows.

Equation in one unknown,
y=ax (1.9
1



2 DETERMINANTS AND MATRICES

Solution:
x = yla (1.9
Equations in two unknowns,
= a, % +
N 11X1 T 319Xy (1.5)
Vs = @ X; + GaaXy
Solution:
X = Y145 — Va0 X = Vsl — V18xq a.n

1= 2 =
8,0y — Gndyy And — Inds

The combination of products on the R.H.S. in each case can be selected
by inspection of the coefficients in the equations when the selection
pattern is known. The above solution can be written

‘N Qs a1 N

it %8 1 Nl (18)
an G5 ay G
Y Gy g

The sets of values enclosed by vertical lines are called determinants. It will
be seen that the denominator determinant is made up of the coefficients
while in the numerator the variables y replace the column corresponding
to the appropriate variable x. This is known as Cramer’s Rule. The
diagonal quantities are multiplied and summed with the signs shown in
equations (1.7).

Equations in three unknowns,
»=anX; + GuXy + %
Ya = anX; + dnX; + apX, 1.9)
Vs = ag %) -+ Xy + g%y
Solution:
i Gz Oy ay ) G ay G N
Ys Gy On s )y axn Gy 4y J)s
Xy=|)s Gsg Gss Xg=|dn )3 G Xyg=|dy O )3
A A A
a; 3 dy
Gy Qs Og (1.10)
where A=|ay an ay
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The third order determinant is expanded as follows. The first two columns

are repeated and diagonal products are formed, for example,

N1 Gy ey ays

Ye 1 lgy s Ay

' Vs G an y; oay
giving _
N1838s3 + Q138535 + A13Vadse
The process is repeated, starting from y,,
YsOgatyg + G338 )y t+ 33)athe
The second set is subtracted from the first,

N G Gy 1933053 + G130a3)s + d1a)2s

Yz O Oy
Vs Og Qg

—Y3Q5013 — Ogefes)y — Ag3)alhig

Equations in four unknowns,

N = auX, + apXs + apXs + a1 %,
Ya = GuXy -+ GgaXg F ApXy + Ay X,
Vs = QX + 05Xy + AX3 + G5y %y
Yo = agX + GuXs + GaXy + auX,
Solution: '
N1 Gin Gz Gy
Yo Qe Gy a3

Y3 On Gy Gy

Vi Gu Qg Gy
X = —— el

Gn Gz Gz Ay
Gy Gy Gy Oy
Gy Q3 O3z a3y
Ay G2 gz 4

(.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

The fourth order determinant is expanded as the sum of four products.
Each of these is the product of the element of a row and the third order
determinant remaining when that row and the corresponding column are
eliminated. Each of the smaller determinants, called ‘Minors’, has its
sign determined by (—1)*/ where { and j are the numbers of the row and
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column that have been eliminated. The signed minor is called the ‘co-
factor’. The determinant can be expanded as the sum of the products of
the elements of any row or column and the corresponding co-factors.
The general expression for expansion of an nt2 order determinant can be
written
A, = auMuy(— 1) + ap,M(—1)72 + etc. 1.17)

or An‘ = auMup (- (1.18)

The expansion of the fourth order determinant in the numerator of
equation (1.16) is therefore

Qg Qgg Ay dQp @3 Ay
Ji| Gz Q33 Gaq | — Va| Gz Q33 Gy
Qa Qg3 Oy Qa Gg3 Oy

Qypy Gy Gy Q13 @13 dyy
+ Vsl G Qg Qo | — Ys| G2 G Iy (1.19)
Qg3 Gg3 Gy a3y Qgg dy

Every numerical determinant when expanded has a single arithmetical
value, which may be positive, negative or zero. If a determinant has the
value zero then the rows and columns are not completely independent.
Some further properties of determinants used in the solution of simul-
taneous equations are as follows—

(@) The value of a determinant is unaltered by transposition of rows
and columns. :

(b) If two rows or columns are interchanged the sign of the determinant
is reversed. '

(¢) If two rows or columns are equal or proportional, term by term, the
value of the determinant is zero.

(d) If the rows and columns are dependent, the value of the determinant
is zero. : '

(e) If the elements of any row or column are multiplied by a constant,
the determinant is multiplied by that constant. ,

(f) If each element of a row or column is the sum of two terms the
determinant can be expressed as the sum of two determinants.

(g) If the elements of any row or column are increased or decreased by
equimultiples of the corresponding elements of any other row or
column the value of the determinant is unchanged.

(h) The value of a-triangular determinant or a diagonal determinant is

-the product of the diagonal elements.
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1.2 Matrices

In large complicated calculations coefficients and variables may often be
- grouped in separate blocks, as is the case in setting up determinants.
However, a matrix is only an array of numbers, and the matrix does not
have a single numerical value as the determinant does. The matrix group-
ing of terms is used merely to simplify routine operations. Matrices may
be added together, multiplied, differentiated, etc., the operations being
carried out on each of the individual terms, but some of these operations
‘can be carried out only when the several matrices concerned have the
proper compatible numbers of rows and columns.
The set of simultaneous equations

e, = Zyiy + Zyyly + Zygis
ey = Zniy + Zyly + Znis (1.20)
= Zyiy + Zgsly + Zsly

can be written in matrix form

e]l. [Zu Zun Zs i
ez = ZZI Zzz 223 o iz (1.21)
€s Zy Zgp Zg iy
In index notation,
en = Zypyln ‘ (1.22)

Another way of writing equations (1.21) is

m\ m\n : n\
| € Zn Zl2 Zw il
ey | = Zyn V Zy | Zyg | - iy (1.23)
€3 Zy | Zn | Zs i3 »

The repeated index n is summed. Thus the two matrices on the right hand
side are multiplied by starting at the top left-hand element Z;,, multlplymg
it by i, proceeding t0 Zi, etc., and summing these products. This gives
the first row. Similar operations give the remaining rows.

Addition and subtraction

Obviously two matrices can have their elements added or subtracted
only if they have the same number of rows and columns.
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Multiplication by a constant

A matrix is multiplied by a constant when each of its terms is multiplied
by that constant.

Multiplication of matrices

Two matrices may be multiplied together only if one of them has
the same number of rows as the number of columns in the other. The
order -of multiplication is important. This is most clearly shown by
examples.

Matrix B post-multiplied by matrix A is written B. A. This is not
the same as A .B (which would read B pre-multiplied by A) and it
may not in fact be possible to carry out the second multiplication,
for example,

41 B cC Ax + By + Cz
y |= (1.24)
D| E|F Dx+ Ey + Fz

Obviously in this case the multiplication could not be carried out if the
order of multiplication were reversed.

Again,
x5
A}B|C Ax+ By + Cz| As+ Bt + Cu
ylt]= — (1.24a)
D|E|F Dx + Ey + Fz | Ds + Et + Fu
zlu

This could be described as ‘two by three’ by ‘three by two’. The adjacent
numbers show the compatibility of the matrices and the outer numbers
. give the number of rows and columns of the product matrix. With square
matrices the order of multiplication must be clearly specified.

Occasionally it is necessary to operate with matrices that have the rows
and columns transposed. Itis seen that the transpose of (AB) = (transpose
of B) (transpose of A); for example,



MATRICES
A )]
vl23 ft]2]1 (AB)
22814
4156 314)2]|=
49 | 64 | 32
s|6{3
1 (3]s 1] 4 2149
2| 4|6 2| 5 [={28]64
1 {21313 3|6 14| 32

(1.25)

aze

Any matrix can be written as the sum of a symmetrical matrix and a skew-
symmetrical matrix. In index notation,

where

and

For example,
11213
718109

Matrix inversion

Ay= B; + C4
Bymm.

Skew-symm.

By =4y, + Ay
Cy= HAR —~ Ay

(127

(1.28)
(129)

~1

Division by a matrix can be carried out only by use of the inverse matrix.
The solution of the set of equations (1.20) is written

iy = (Zmu)"_l €n

(1.30)

and the inverse of the matrix of coefficients in (1.23) is required. A matrix
has an inverse only if it is square (‘non-singular’) and this is found as

follows.

(1) Transpose the matrix.
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(2) Replace each element by its co-factor (the resulting matrix is called
the ‘adjoint’).
(3) Divide each element of this matrix by the determinant of the original
matrix.
Al= (1.31)

It is evident that the process is tedious by hand calculation if the matrix
has more than three rows and columns. However, a large matrix can be
partitioned and systematically solved in stages.®* Special techniques
have also been developed for inverting matrices and electronic computers
have standard programmes for this purpose.

Partitioning

Any matrix can be sub-divided into several sections, each section
forming an element of the partitioned matrix. Care is required in handling
partitioned matrices since in some cases operations carried out on the
whole matrix must also be carried out on the smaller matrices comprising
the elements, for example when transposing,

1 2 1 5 6
3 4 7 8 A | B
Al = = (1.32)
9 | 10| 13 ] 14 c| p}|
1l 12l 151 16
4, | C
A = (1.33)
B, | D,

If two partitioned matrices are to be multiplied, the partitioned parts must
be compatible as to rows and columns;. for example,

a b c x a b ¢ x

d e fl-l y Jor| d e fi-1tvy
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or
a b ¢ x
d e F ¥y
g By J z
In each case
4 | B p Ap + Bg
C D q Cp + Dg

Elimination of rows and columns®

A matrix equation can be partitioned across the variables to be elimin-
ated. This forms compound matrices

€

Z,

Z,

iy

€

Zy

Z,

)

(1.34)

(1.35)

and since the whole Z-matrix is square the matrices Z; and Z, will also be
square. The elements of the matrix equation (1.35) are all matrices.

izl

Expanding the equation (1.35)

and, eliminating i,
| Zj, =

& = Zyiy + Zyi,
= Zsi; + Z,i,

ey — Zgi;
ip = 2Zg l(ez —~ Z;i,)

e, = Z i, + Z,7; (e — Zsy)

= LZi'e + (& — L4 Ih

Suppose it is required to eliminate the variables represented in (1.35) by ‘

(1.36)

(1.37)

(1.38)



