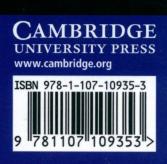
T	0	D	10	2	IN	· .	
	\smile						ASSESSMENT OF THE PARTY OF THE
_		_	_				

COMPUTATIONAL NUMBER THEORY

INSPIRED BY


PETER L. MONTGOMERY

Peter L. Montgomery has made significant contributions to computational number theory, introducing many basic tools such as Montgomery multiplication, Montgomery simultaneous inversion, Montgomery curves, and the Montgomery ladder. This book features state-of-the-art research in computational number theory related to Montgomery's work and its impact on computational efficiency and cryptography. It covers a wide range of topics such as Montgomery multiplication for both hardware and software implementations; Montgomery curves and twisted Edwards curves as proposed in the latest standards for elliptic curve cryptography; and cryptographic pairings. This book provides a comprehensive overview of integer factorization techniques, including dedicated chapters on polynomial selection, the block Lanczos method, and the FFT extension for algebraic-group factorization algorithms. Graduate students and researchers in applied number theory and cryptography will benefit from this survey of Montgomery's work.

Joppe W. Bos is a cryptographic researcher at the Innovation Center for Cryptography & Security at NXP Semiconductors. He also currently serves as the Secretary of the International Association for Cryptologic Research (IACR). His research focuses on computational number theory and high-performance arithmetic as used in public-key cryptography.

Arjen K. Lenstra is Professor of Computer Science at École Polytechnique Fédérale de Lausanne. His research focuses on cryptography and computational number theory, especially in areas such as integer factorization. He was closely involved in the development of the number field sieve method for integer factorization as well as several other cryptologic results. He is the recipient of the Excellence in the Field of Mathematics RSA Conference 2008 Award and a Fellow of the International Association for Cryptologic Research (IACR).

JOPPE W.
BOS
AND
ARJEN K.
LENSTRA

Topics in Computational Number Theory Inspired by Peter L. Montgomery

Edited by

JOPPE W. BOS

NXP Semiconductors, Leuven, Belgium

ARJEN K. LENSTRA EPFL, Lausanne, Switzerland

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107109353
DOI: 10.1017/9781316271575

© Joppe W. Bos and Arjen K. Lenstra 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Bos, Joppe W., editor. | Lenstra, A. K. (Arjen K.), 1956- editor.

Title: Topics in computational number theory inspired by Peter L. Montgomery / edited by Joppe W. Bos, NXP Semiconductors, Belgium; Arjen K. Lenstra, EPFL, Lausanne, Switzerland.

Description: Cambridge: Cambridge University Press, 2017. | Series: London Mathematical Society lecture note series | Includes bibliographical references and index. Identifiers: LCCN 2017023049 | ISBN 9781107109353 (pbk.: alk. paper)

Subjects: LCSH: Number theory. | Cryptography – Mathematics. | Montgomery, Peter L., 1947–

Classification: LCC QA241 .T657 2017 | DDC 512.7 – dc23 LC record available at https://lccn.loc.gov/2017023049

ISBN 978-1-107-10935-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

比为试读,需要完整PDF请访问: www.ertongbook.com

Topics in Computational Number Theory Inspired by Peter L. Montgomery

Peter L. Montgomery has made significant contributions to computational number theory, introducing many basic tools such as Montgomery multiplication, Montgomery simultaneous inversion, Montgomery curves, and the Montgomery ladder. This book features state-of-the-art research in computational number theory related to Montgomery's work and its impact on computational efficiency and cryptography. It covers a wide range of topics such as Montgomery multiplication for both hardware and software implementations; Montgomery curves and twisted Edwards curves as proposed in the latest standards for elliptic curve cryptography; and cryptographic pairings. This book provides a comprehensive overview of integer factorization techniques, including dedicated chapters on polynomial selection, the block Lanczos method, and the FFT extension for algebraic-group factorization algorithms. Graduate students and researchers in applied number theory and cryptography will benefit from this survey of Montgomery's work.

Joppe W. Bos is a cryptographic researcher at the Innovation Center for Cryptography & Security at NXP Semiconductors. He also currently serves as the Secretary of the International Association for Cryptologic Research (IACR). His research focuses on computational number theory and high-performance arithmetic as used in public-key cryptography.

Arjen K. Lenstra is Professor of Computer Science at École Polytechnique Fédérale de Lausanne. His research focuses on cryptography and computational number theory, especially in areas such as integer factorization. He was closely involved in the development of the number field sieve method for integer factorization as well as several other cryptologic results. He is the recipient of the Excellence in the Field of Mathematics RSA Conference 2008 Award and a Fellow of the International Association for Cryptologic Research (IACR).

Contributors

Joppe W. Bos, NXP Semiconductors, Leuven, Belgium

Arjen K. Lenstra, EPFL, Lausanne, Switzerland

Herman te Riele, CWI, Amsterdam, Netherlands

Daniel Shumow, Microsoft Research, Redmond, USA

Peter L. Montgomery, Self

Colin D. Walter, Royal Holloway, University of London, Egham, United Kingdom

Daniel J. Bernstein, University of Illinois at Chicago, Chicago, USA and Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Tanja Lange, Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Thorsten Kleinjung, *University Leipzig, Leipzig, Germany and EPFL, Lausanne, Switzerland*

Emmanuel Thomé, Inria, Nancy, France

Richard P. Brent, Australian National University, Canberra, Australia

Alexander Kruppa, Technische Universität München, München, Germany

Paul Zimmermann, Inria/LORIA, Nancy, France

Kristin Lauter, Microsoft Research, Redmond, USA

Michael Naehrig, Microsoft Research, Redmond, USA

Preface

This book was written in honor of Peter L. Montgomery and his inspirational contributions to computational number theory. The editors would like to extend their sincerest thanks to all authors for their enthusiastic response to our invitation to contribute, and to Nicole Verna for the cover design.

Contents

	List of	f Contributors	page xi
	Prefac	ce	xiii
1	Intro	duction	1
1.1	Outlin	e	1
1.2	Biographical Sketch		
1.3	Overv	iew	5
1.4	Simul	taneous Inversion	8
2	Mont	gomery Arithmetic from a Software Perspective	10
2.1	Introd	uction	10
2.2	Montg	gomery Multiplication	12
	2.2.1	Interleaved Montgomery Multiplication	15
	2.2.2	Using Montgomery Arithmetic in Practice	16
	2.2.3	Computing the Montgomery Constants μ and R^2	18
	2.2.4	On the Final Conditional Subtraction	19
	2.2.5	Montgomery Multiplication in \mathbb{F}_{2^k}	21
2.3	Using	Primes of a Special Form	22
	2.3.1	Faster Modular Reduction with Primes of a	
		Special Form	23
	2.3.2	Faster Montgomery Reduction with Primes of a	
		Special Form	24
2.4	Concu	arrent Computing of Montgomery Multiplication	26
	2.4.1	Related Work on Concurrent Computing of	
		Montgomery Multiplication	27
	2.4.2	Montgomery Multiplication Using SIMD Extensions	27
	2.4.3	A Column-Wise SIMD Approach	31

vi Contents

	2.4.4	Montgomery Multiplication Using the Residue	
		Number System Representation	36
3	Hardy	vare Aspects of Montgomery Modular	
		lication	40
3.1	_	action and Summary	40
3.2	Histori	cal Remarks	42
3.3	Montg	omery's Novel Modular Multiplication Algorithm	42
3.4	Standard Acceleration Techniques		43
3.5	Shiftin	g the Modulus N	44
	3.5.1	The Classical Algorithm	44
	3.5.2	Montgomery	45
3.6	Interle	aving Multiplication Steps with Modular Reduction	46
3.7	Accept	ting Inaccuracy in Quotient Digits	48
	3.7.1	Traditional	48
	3.7.2	Bounding the Partial Product	50
	3.7.3	Montgomery	52
	3.7.4	Summary	52
3.8	Using	Redundant Representations	53
	3.8.1	Traditional	54
	3.8.2	Montgomery	54
3.9	Chang	ing the Size of the Hardware Multiplier	55
3.10	Shiftin	g an Operand	57
	3.10.1	Traditional	57
	3.10.2	Montgomery	60
3.11	Precon	nputing Multiples of B and N	61
		gating Carries and Carry-Save Inputs	62
		g the Modulus	65
3.14		ic Arrays	67
		A Systolic Array for $A \times B$	68
		Scalability	70
		A Linear Systolic Array	72
		A Systolic Array for Modular Multiplication	73
		channel Concerns and Solutions	76
		Gate Technology	80
3.17	Conclu	asion	81
4	Montg	gomery Curves and the Montgomery Ladder	82
4.1	Introdu	action	82
4.2	Fast So	calar Multiplication on the Clock	83

Contents vii

	4.2.1	The Lucas Ladder		85	
	4.2.2	Differential Addition Chains		85	
4.3	Montg	gomery Curves		87	
	4.3.1	Montgomery Curves as Weierstrass Curves		87	
	4.3.2	The Group Law for Weierstrass Curves		88	
	4.3.3	Other Views of the Group Law		89	
	4.3.4	Edwards Curves and Their Group Law		90	
	4.3.5	Montgomery Curves as Edwards Curves		92	
	4.3.6	Elliptic-Curve Cryptography (ECC)		93	
	4.3.7	Examples of Noteworthy Montgomery Curves		94	
4.4	Doubl	ing Formulas without y		95	
	4.4.1	Doubling: The Weierstrass View		95	
	4.4.2	Optimized Doublings		96	
	4.4.3	A Word of Warning: Projective Coordinates		97	
	4.4.4	Completeness of Generic Doubling Formulas		97	
	4.4.5	Doubling: The Edwards View		98	
4.5	Differ	ential-Addition Formulas		99	
	4.5.1	Differential Addition: The Weierstrass View		99	
	4.5.2	Optimized Differential Addition		101	
	4.5.3	Quasi-Completeness		101	
	4.5.4	Differential Addition: The Edwards View		103	
4.6	The Montgomery Ladder				
	4.6.1	The Montgomery Ladder Step		104	
	4.6.2	Constant-Time Ladders		105	
	4.6.3	Completeness of the Ladder		106	
4.7	A Two	o-Dimensional Ladder		107	
	4.7.1	Introduction to the Two-Dimensional Ladder		108	
	4.7.2	Recursive Definition of the Two-Dimensional Ladder		109	
	4.7.3	The Odd-Odd Pair in Each Line: First Addition		110	
	4.7.4	The Even-Even Pair in Each Line: Doubling		110	
	4.7.5	The Other Pair in Each Line: Second Addition		111	
4.8	Larger Differences				
	4.8.1	Examples of Large-Difference Chains		112	
	4.8.2	CFRC, PRAC, etc.		114	
	4.8.3	Allowing d to Vary		114	
5		ral Purpose Integer Factoring		116	
5.1		roduction			
5.2	Genera	al Purpose Factoring		117	

viii Contents

	5.2.1 Two-Step Appro	each	117
	5.2.2 Smoothness and	L-notation	119
	5.2.3 Generic Analysis	s	120
	5.2.4 Smoothness Test	ting	121
	5.2.5 Finding Depende	encies	123
	5.2.6 Filtering		123
	5.2.7 Overall Effort		126
5.3	Presieving General Purp	oose Factoring	126
	5.3.1 Dixon's Random	n Squares Method	126
	5.3.2 Continued Fract	ion Method	127
5.4	Linear and Quadratic Si	eve	129
	5.4.1 Linear Sieve		129
	5.4.2 Quadratic Sievir	ng: Plain	132
	5.4.3 Quadratic Sievin	ng: Fancy	133
	5.4.4 Multiple Polyno	mial Quadratic Sieve	134
5.5	Number Field Sieve		137
	5.5.1 Earlier Methods	to Compute Discrete Logarithms	139
	5.5.2 Special Number	Field Sieve	145
	5.5.3 General Number	r Field Sieve	152
	5.5.4 Coppersmith's M	Modifications	158
5.6	Provable Methods		160
6	Polynomial Selection f	for the Number Field Sieve	161
6.1	The Problem		161
6.2	Early Methods		161
6.3	General Remarks		164
6.4	A Lattice Based Method	d	166
6.5	Skewness		168
6.6	Base m Method and Ske	ewness	170
6.7	Root Sieve		171
6.8	Later Developments		173
7	The Block Lanczos Al	gorithm	175
7.1	Linear Systems for Inte	ger Factoring	175
7.2	The Standard Lanczos	Algorithm	176
7.3	The Case of Characteris	stic Two	179
7.4	Orthogonalizing a Sequ	ence of Subspaces	180
7.5	Construction of the Nex		181
7.6	Simplifying the Recurre	ence Equation	182
7.7	Termination		184
7.8	Implementation in Para	llel	186
70	Recent Developments		187

Contents ix

8	FFT Extension for Algebraic-Group Factorization			
	Algor	ithms	189	
8.1	Introd	Introduction		
8.2	FFT E	extension for the Elliptic Curve Method	191	
	8.2.1	The Product Tree Algorithm	192	
	8.2.2	The POLYEVAL Algorithm	192	
	8.2.3	The POLYGCD Algorithm	195	
	8.2.4	Choice of Points of Evaluation	197	
	8.2.5	A Numerical Example	199	
8.3	FFT E	extension for the $p-1$ and $p+1$ Methods	199	
	8.3.1	Constructing $F(X)$ by Scaling and Multiplying	201	
	8.3.2	Evaluation of a Polynomial Along a Geometric		
		Progression	202	
9	Crypt	tographic Pairings	206	
9.1	Prelim	ninaries	207	
	9.1.1	Elliptic Curves	208	
	9.1.2	Pairings	209	
	9.1.3	Pairing-Friendly Elliptic Curves	213	
9.2	Finite	Field Arithmetic for Pairings	213	
	9.2.1	Montgomery Multiplication	214	
	9.2.2	Multiplication in Extension Fields	215	
	9.2.3	Finite Field Inversions	215	
	9.2.4	Simultaneous Inversions	218	
9.3	Affine	Coordinates for Pairing Computation	219	
	9.3.1	Costs for Doubling and Addition Steps	219	
	9.3.2	Working over Extension Fields	223	
	9.3.3	Simultaneous Inversions in Pairing Computation	225	
9.4	The D	ouble-Add Operation and Parabolas	227	
	9.4.1	Description of the Algorithm	228	
	9.4.2	Application to Scalar Multiplication	229	
	9.4.3	Application to Pairings	229	
9.5	Squared Pairings			
	9.5.1	The Squared Weil Pairing	232	
	9.5.2	The Squared Tate Pairing	233	
	Biblio	graphy	235	
	Subjec	ct Index	26	