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Preface

The origins of this book can be traced back to a series of six seminars,
which I gave in Cambridge in the winter of 1973/74, and which formed the
nucleus of the present chapters 1-6. Further seminars in the same series,
covering parts of chapters 0, 7 and 9, were given by Barry Tennison and
Robert Seely. By popular request, the notes of these seminars were written
up and enjoyed a limited circulation. In the summer of 1974, I began to
revise and expand these notes, with the idea that they might some day forma
book. During the winter and spring of 1975, whilst at the University of
Liverpool, I was able to give a course of lectures covering the material of
chapters 0-5 and 8 in some detail. By the end of this period, I had a fairly
clear picture of the overall shape of the book ; and (encouraged by Michael
Butler) I began the actual writing of it in July 1975. From October 1975 to
March 1976 I was at the University of Chicago, where there was a weekly
seminar on topos theory organized by Saunders Mac Lane and myself; the
material covered during this period was drawn mainly from chapters 2, 4, 5,
6 and 9, and the speakers (in addition to myself) were Kathy Edwards, Steve
Harris and Steve Landsburg. Also during this period, I wrote the text of
chapters 2-5 and most of chapter 6; the remainder of the text was completed
during May-July 1976 after my return to Cambridge.

The lectures and seminars mentioned above had a very direct influence on
thetextofthe book,andall those who attended them (in particular those whose
names appear above) deserve my thanks for the part they have played in
shaping it. But I have also benefited from more informal contacts with many
mathematicians at conferences and elsewhere. Among those whose (largely
unpublished)ideas I have gladly borrowed are Julian Cole, Radu Diaconescu,
Mike Fourman, Peter Freyd, André Joyal and Chris Mulvey. John Gray
gave me valuable advice on 2-categorical matters, and Jack Duskin and Barry
Tennison helped to improve my understanding of cohomology. And I must
thank Jean Bénabou for the many ideas I have consciously or inadvertently
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borrowed from him, and Tim Brook for his help in the compilation of the
bibliography.

There remain four mathematicians to whom I owe a debt which must be
acknowledged individually. Myles Tierney introduced me to topos theory
through his lectures at Varenna in 1971; looking back on the published ver-
sion [TV], I still find it incredible that he managed to teach me so much in
eight short lectures. Gavin Wraith’s help and encouragement have meant a
great deal to me, and his Bangor lectures [WB] served as a model for some
parts of this book. Like every other worker in topos theory, I owe Bill Lawvere
an overwhelming debt in general terms, for his pioneering insights; but I have
alsobenefited ata more personal level from his ideas and conversation. Above
all, I have to express my indebtedness to Saunders Mac Lane: but for him I
should never have become a topos-theorist in the first place; and the care
with which he has read through the original typescript, and provided sugges-
tions for improvement in almost every paragraph, has been altogether out of
the ordinary. If there are any major errors or obscurities still remaining in the
text, they are surely a testimony to my perversity rather than his lack of
vigilance.

On a different, but no less significant, level, I must also thank the Univer-
sities of Liverpool and Chicago, and St John’s College, Cambridge, for
employing me during the writing of the book ; Paul Cohn, for accepting it for
publication in the L.M.S. Monographs series; and the staff of Academic Press
for the efficiency with which they have transformed my amateurish typescript
into the book which you see before you.

Cambridge, June 1977 P.T.J.



Introduction

Topos theory hasits origins in two separate lines of mathematical develop-
ment, which remained distinct for nearly ten years. In order to have a
balanced appreciation of the significance of the subject, I believe it is necessary
to consider the history of these two lines, and to understand why they came
together when they did. I therefore begin this Introduction with a (personal,
and doubtless strongly biased) historical survey.

The earlier of the two lines begins with the rise of sheaf theory, originated
in 1945 by J. Leray, developed by H. Cartan and A. Weil among others, and
culminating in the published work of J. P. Serre [107], A. Grothendieck [42]
and R. Godement [TF]. Like a great deal of homological algebra, the theory
of sheaves was originally conceived as a tool of algebraic topology, for
axiomatizing the notion of *local coefficient system’ which was essential
for a good cohomology theory of non-simply-connected spaces; and the full
title of Godement’s book indicates that it was still viewed in this light in
1958. But well before this date, the power of sheaf theory had been recognized
by algebraic and analytic geometers; and in more recent years, its influence
has spread into many other areas of mathematics. (For two widely-differing
examples, see [49] and [106].)

However, in algebraic geometry it was soon discovered that the topological
notion of sheaf was not entirely adequate, in that the only topology available
onan abstract algebraic variety or scheme, the Zariski topology, did not have
“enough open sets” to provide a good geometric notion of localization. In
his work on descent techniques [43] and the étale fundamental group [44], A.
Grothendieck observed that to replace “Zariski-open inclusion” by “‘étale
morphism’ was a step in the right direction; but unfortunately the schemes
which are étale over a given scheme do not in general form a partially ordered
set. It was thus necessary to invent the notion of ““Grothendieck topology™
on an arbitrary category, and the generalized notion of sheaf for such a
topology, in order to provide a framework for the development of étale
cohomology.
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Xii INTRODUCTION

This framework was built up during the ‘“Seminaire de Géometrie
Algébrique du Bois Marie” held during 1963-64 by Grothendieck with the
assistance of M. Artin, J. Giraud, J. L. Verdier and others. (The proceedings
of this seminar were published in a revised and greatly enlarged version [GV],
including some notable additional results of P. Deligne, cight years later.)
Among the most important results of the original seminar was the theorem of
Giraud, which showed that the categories of generalized sheaves which arise
in this way can be completely characterized by exactness properties and size
conditions; in the light of this result, it quickly became apparent that these
categories of sheaves were a more important subject of study than the sites
(= categories + topologies) which gave rise to them. In view of this, and
because a category with a topology was seen as a “‘generalized topological
space”, the (slightly unfortunate) name of topos was given to any category
satisfying Giraud’s axioms.

Nevertheless, toposes were still regarded primarily as vehicles for carrying
cohomology theoreies; not only étale cohomology, but also the “fppf”’ and
crystalline cohomologies, and others. The power of the machinery developed
by Grothendieck was amply demonstrated by the substantial geometrical
results obtained by using these cohomology theories in the succeeding years,
culminating in P. Deligne’s proof [159] of the famous ““Weil conjectures™—
the mod-p analogue of the Riemann hypothesis. And the machinery itself
was further developed, for example in J. Giraud’s work [38] on nonabelian
cohomology. But the full import of the dictum that *‘the topos is more impor-
tant than the site’’ seems never to have been appreciated by the Grothendieck
school. For example, though they were aware of the cartesian closed structure
of toposes ([GV], IV 10), they never exploited this idea to the full along the
lines laid down by Eilenberg-Kelly [160]. It was, therefore, necessary that a
second line of development should provide the impetus for the elementary
theory of toposes.

The starting-point of this second line is generally taken to be F. W.
Lawvere’s pioneering 1964 paper on the elementary theory of the category of
sets [71]. However, I believe that it is necessary to go back a little further, to
the proof of the Lubkin—Heron-Freyd-Mitchell embedding theorem for
abelian categories [AC]. It was this theorem which, by showing that there is an
explicit set of elementary axioms which imply all the (finitary) exactness
properties of module categories, paved the way for a truly autonomous
development of category theory as a foundation for mathematics.

(Incidentally, the Freyd-Mitchell embedding theorem is frequently
regarded as a culmination rather than a starting-point; this is because of what
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seems to me a misinterpretation (or at least an inversion) of its true signifi-
cance. It is commonly thought of as saying *“If you want to prove something
about an abelian category, you might as well assume it is a category of
modules™ ; whereas I believe its true importis “If you want to prove something
about categories of modules, you might as well work in a general abelian
category”—for the embedding theorem ensures that your result will be true
in this generality, and by forgetting the explicit structure of module categories
you will be forced to concentrate on the essential aspects of the problem. As
an example, compare the module-theoretic proof of the Snake Lemma in
[HA] with the abelian-category proof in [CW].)

This theorem was soon followed by Lawvere’s paper [71], setting out a
list of elementary axioms which, with the addition of the non-elementary
axioms of completeness and local smallness, are sufficient to characterize
the category of sets. (In a subsequent paper [72], Lawvere provided a similar
axiomatization of the category of small categories, and D. Schlomiuk [105]
did the same for the category of topological spaces.)

One may well ask why this paper was not immediately followed by the
explosion of activity which greeted the introduction of elementary toposes
six years later. In retrospect, the answer is that Lawvere’s axioms were too
specialized: the category of sets is an extremely useful object to have as a
foundation for mathematics, but as a subject of axiomatic study it is not
(pace the activities of Martin, Solovay et al.!) tremendously interesting—it
is too “‘rigid” to have any internal structure. In a similar way, if the abelian-
category axioms had applied only to the category of abelian groups, and not
to categories of modules or of abelian sheaves, they too would have been
neglected. So what was needed for the category of sets was an axiomatization
which would also cover set-valued functor categories and categories of set-
valued sheaves—i.e. the axioms of an elementary topos.

In his subsequent papers ([73], [75]), Lawvere began to investigate the idea
that the two-element set {true, false} can be regarded as an “‘object of truth-
values™ in the category of sets; in particular, he observed that the presence
of such an object in an arbitrary category enables us to reduce the Compre-
hension Axiom to an elementary statement about adjoint functors. The same
idea was at the heart of the work of H. Volger ([125], [126]) on logical and
semantical categories.

Meanwhile, the embedding-theorem side of things was advanced by M.
Barr [2], who formulated the notion of exact category and used it as the basis
of a non-additive embedding theorem. The closely-related notion of regular
category was formulated independently by P. A. Grillet [41] and D. H. Van
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Osdol [122], who used it in their investigations of general sheaf theory: and
Barr himself observed that Giraud’s theorem could be regarded as little
more than a special case of his embedding theorem. This perhaps represents
(logically, if not chronologically) the first coming-together of the two lines of
development mentioned earlier.

However, at about the same time Lawvere’s attention also turned towards
Grothendieck toposes; he observed that every Grothendieck topos has a
truth-value object Q, and that the notion of Grothendieck topology is closely
connected with endomorphisms of Q (see [LH]). During the year 1969-70,
Lawvere and M. Tierney (who had earlier contributed to the theory of exact
categories) began to investigate the consequences of taking “‘there exists an
object of truth-values’ as an axiom;the result was elementary topos theory.
A remarkably large proportion of the basic theory was developed in that
12-month period, as will be apparent from the large number of theorems in
chapters 1-4 of this book whose proof is credited to Lawvere and Tierney.

Once these theorems became known to mathematicians at large (i.e. after
Lawvere’s lectures at Ziirich and Nice [LN] in the summer of 1970, and the
Dalhousie conference [LH] in January 1971), they were immediately taken
up and further developed by several people. One of the first and most im-
portant was P. Freyd, whose lectures at the University of New South Wales
[FK] explored the embedding theory of toposes; in retrospect this seems to
have been something of a blind alley, in that the inversion of the usual
metatheorem, mentioned above in connection with abelian categories, applies
with even more force to topos theory—since the great virtue of the topos
axioms is their elementary character, one should not have to appeal to a non-
elementary embedding theorem to prove elementary facts about toposes.
(Freyd’s embedding theorem will not be found in this book ; but the most
important (and elementary) part of it, which shows that any topos can be
embedded in a Boolean topos, is proved in §7.5.) Nevertheless, Freyd’s
work contained a great many important technical results; in particular his-
characterization of natural number objects is a theorem of major importance.

Amongst other early workers on topos theory, one should mention J.
Bénabou and his student J. Celeyrette in Paris [BC], and A. Kock and G. C.
Wraith in Aarhus [KW]. C. J. Mikkelsen, a student of Kock, was the first
to prove that one of the Lawvere-Tierney axioms, that of finite colimits,
could be deduced from the others; his thesis [84] also contains many im-
portant contributions to lattice-theory in a topos.

In view of the Lawvere-Tierney proof of the independence of the con-
tinuum hypothesis [117], it became a matter of importance to determine the
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precise relationship between elementary topos theory and axiomatic set
theory. The answer was found independently by J. C. Cole [18], W. Mitchell
[85] and G. Osius [92]. W. Mitchell also introduced an idea which has since
become central to the subject : namely that each topos gives rise to an internal
language which can be used to make ‘“quasi-set-theoretical” statements
about objects and morphisms of the topos. Whilst the original idea is due to
Mitchell, its most enthusiastic proponent has undoubtedly been J. Bénabou,
and his students have used the internal language extensively in recent
years.

The next major advance was made by R. Diaconescu, a student of Tierney
whose thesis was completed in 1973. Diaconescu’s theorem [30] was im-
portant not only for the insight it gave into the 2-categorical structure of
Top, but also because it represented the first significant exploitation of the
theory of internal categories. (This theory had developed over the years in a
rather haphazard way, largely through unpublished work of J. Bénabou.)
As an encore, Diaconescu proved the relative Giraud theorem; Giraud
himself [39] had proved a relative version of his theorem (by non-elementary
means) for Grothendieck toposes, and W. Mitchell had formulated the
correct elementary form. But Mitchell was able to prove this only in the
special case when the “object of generators” (see 4.43) is 1; it turned out
that Diaconescu’s theorem was the essential tool needed to prove the general
case. At about the same time, P. T. Johnstone [52] also used internal cate-
gories in his proof that Grothendieck’s construction of the associated sheaf
functor could be carried over to the elementary setting.

The next development (which in fact overlapped the previous ones) was the
rise of the notion of toposes as theories and the concept of classifying topos.
In a sense, this goes right back to Lawvere’s work [176] on algebraic theories,
but its connection with topos theory began with the work of M. Hakim
[45], a student of Grothendieck, on relative schemes, in the course of which
she constructed the classifiers for rings and local rings, and established their
fundamental properties. In 1972, A. Joyal and G. E. Reyes [RM] isolated
the notion of “‘coherent theory” ( =finitary geometric theory, in our termin-
ology), and proved that every such theory has a classifying topos ; their work
was later extended by Reyes and M. Makkai [82] to cover infinitary geo-
metric theories.

It was F. W. Lawvere [LB] who first observed that, in view of the work of
Joyal and Reyes, the theorem of P. Deligne on points of coherent toposes
was precisely equivalent to the Godel-Henkin completeness theorem for
finitary geometric theories; and Lawvere too conjectured the ‘“Boolean-
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valued completeness theorem” for infinitary theories whose topos-theoretic
equivalent was proved by M. Barr [4].

Once again, Diaconescu’s theorem provided the key to the ‘‘relativization”
of the Joyal-Reyes results; the decisive step was taken in 1973 by G. C.
Wraith, who constructed an object classifier over an arbitrary topos with a
natural number object. From there to the general existence theorem for
classifying toposes was little more than a formality; it was achieved inde-
pendently by A. Joyal, M. Tierney [119] and J. Bénabou [8].

This brings our historical survey up to date, at least where major results
are concerned. Now let us consider the present position of topos theory, and
its future prospects.

The first thing which must be said is that the basic theory of elementary
toposes (i.e. the contents of chapters 1-5 of this book) seems to be almost
completely worked out. Indeed, 1 am aware of only one substantial un-
answered question arising from these five chapters (namely the existence of
finite (pseudo-)colimits in Top, touched on in §4.2); doubtless there are
many other minor points to be cleared up, and several theorems whose
proofs will be improved and simplified in time, but the foundations of the
subject do appear to be pretty stable. This is of course a bad thing:it is vital
to the health of a subject as basic as topos theory that its fundamental tenets
should be the subject of continual review and improvement, and I am un-
comfortably aware that by writing this book I have contributed largely to the
concreting-over of these foundations. My only defence against this charge
is that it seemed to me that the solidification was taking place anyway, and it
was better that it should happen in print than in an unpublished folklore
accessible only to insiders.

The average mathematician, who regards category theory as “generalized
abstract nonsense”’, tends to regard topos theory as generalized abstract
category theory. (No doubt it has inherited this reputation from its parent,
the Grothendieck approach to algebraic geometry.) And yet S. Mac Lane
[179] regards the rise of topos theory as a symptom of the decline of ab-
straction in category theory, and of abstract algebra in general. I am con-
vinced that Mac Lane is right, and that his insight points the way to the most
probable future development of topos theory ; for almost all the recent work
of significance in topos theory has been concerned not with toposes as an
abstract and isolated area of mathematics, but with toposes as an aid to
understanding and clarifying concepts in other areas. (See, for example,
[36], [57], [63], [79], [88], [90], [112], [130].)

To take a specific example, consider the general existence theorem for
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classifying toposes (6.56). One’s first reaction on seeing this theorem is to
admire its elegance and generality ; the second reaction (which comes quite a
long time later) is to realize its fundamental uselessness—a quality which,
by the way, it shares with the General Adjoint Functor Theorem. For the
only possible use of such a theorem is to reduce the study of a particular
geometric theory to the study of its generic model (or conversely, to reduce
the study of a particular topos to that of the theory whose generic model it
contains), and the theorem as proved in §6.5 simply does not provide an
effective means of passing from the one to the other. Thus the “syntactic”
proof of the same theorem in §7.4, though appreciably messier, is much
more valuable in practice—and it is this proof, not the later one given in the
earlier chapter, which has inspired most subsequent work on the subject.

In saying that the future of topos theory lies in the clarification of other
areas of mathematics through the application of topos-theoretic ideas, I do
not wish to imply that, like Grothendieck, I view topos theory as a machine
for the demolition of unsolved problems in algebraic geometry or anywhere
else.On the contrary, I think it is unlikely that elementary topos theory itself
will solve any major outstanding problems of mathematics; but I do believe
that the spreading of the topos-theoretic outlook into many areas of mathe-
matical activity will inevitably lead to the deeper understanding of the real
features of a problem which is an essential prelude to its correct solution.

What, then, is the topos-theoretic outlook ? Briefly, it consists in the re-
jection of the idea that there is a fixed universe of “constant” sets within which
mathematics can and should be developed, and the recognition that the
notion of “variable structure’” may be more conveniently handled within a
universe of continuously variable sets than by the method, traditional since
therise of abstract set theory, of considering separately a domain of variation
(i.e. a topological space) and a succession of constant structures attached to
the points of this domain. In the words of F. W. Lawvere [LB], “‘Every
notion of constancy is relative, being derived perceptually or conceptually
as a limiting case of variation, and the undisputed value of such notions in
clarifying variation is always limited by that origin. This applies in particular
to the notion of constant set, and explains why so much of naive set theory
carries over in some form into the theory of variable sets”. It is this generali-
zation of ideas from constant to variable sets which lies at the heart of topos
theory; and the reader who keeps it in mind, as an ultimate objective, whilst
reading this book, will gain a great deal of understanding thereby.

Next, a few words on some of the things which I have not done in this
book.
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(1) In the definition of a topos, I have taken cartesian closedness and the
existence of Q as two separate axioms, instead of combining them into a
single axiom of power-objects as suggested by A. Kock [66]. (The equiva-
lence of Kock’s axiom is, however, covered in the Exercises to chapter 1.)
At a practical level, I would defend this decision on two grounds: (a) that
there are a number of results in the book (notably in chapter 2) which use
only cartesian closedness and not the full topos axioms, and some (e.g.
Theorem 1.47) where exponentials and Q are used in essentially different
ways in the same proof’; and (b) that if one takes the power-object definition,
one is obliged (as in [WB]) to follow it immediately with the rather technical
proof that this definition implies cartesian closedness, and one is in danger
of losing one’s readers at this critical point. On a more philosophical level,
I would add (c) that the definition via power-objects is really a set-theorist’s
rather than a category-theorist’s definition of a topos, in that it subordinates
the notion of ““function” to that of “subset’’ by means of the set-theoretic
device of identifying functions with their graphs. One of the principal
features of category theory is that it takes ‘“morphism”’ as a primitive notion,
on a level with (not, incidentally, superior to) that of “object”; it is therefore
right that the definition of a topos should include its closed structure.

(2) I have not introduced the Mitchell-Bénabou language until rather late
in the book, at the end of chapter 5. I know that there are some people whose
ideal textbook on topos theory would begin with the definition and just
enough development of exactness properties to introduce the language and
prove the soundness of its interpretation; thereafter all proofs would be
conducted within the formal language. I do not agree with this approach;
I believe that it is impossible to appreciate the full power of the Mitchell-
Bénabou language until you have had some experience of proving things
without it (indeed, this is almost the only place in the book where I have
consciously followed a particular ordering of material for pedagogical
rather than logical reasons). There is also the point that the formal-language
approach brezks down when confronted with the relative Giraud theorem
(4.46); whilst the Mitchell-Bénabou language is a very powerful tool in
proofs within a single topos, it is not well adapted to proofs in which we have
to pass back and forth between two toposes by a geometric morphism. (It is
possible that the proof of 4.46 could be shortened by using the language of
locally internal categories, but that is a different matter.)

(3) I have already mentioned that Freyd’s embedding theorem [FK] will
not be found in this book. In consequence, Freyd’s concept of well-pointed
topos plays a relatively minor role; it is not introduced until §9.3.
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(4) I have not included any reference to Freyd’s more recent development
(unpublished as yet) of the theory of allegories. This theory sets out to do for
the category of sets and relations what topos theory does for sets and func-
tions; Freyd has been known to maintain that it provides a simpler and more
natural basis than topos theory for many of the ideas developed in this book,
but I personally remain unconvinced of this.

(5) I have not mentioned the work being done by D. Bourn [13], R. Street
[113], [114] and others, on the development of a 2-categorical analogue of
topos theory. It appears to me, however, that the fundamentals of this
theory have not yet reached a sufficiently definitive state for treatment in
book form.

(6) One generalization of topos theory whose omission I do slightly re-
great is J. Penon’s notion of quasitopos [99]. However, I feel that to introduce
it early in the book would simply have introduced extra complications in the
proofs without any benefits in the form of additional well-known examples;
and to introduce it later on would have involved a good deal of duplication.
I hope, nevertheless, that O. Wyler’s forthcoming notes on quasitoposes
(promised in [130]) will help to fill this gap.

(7) The phrase “*‘Grothendieck universe’” does not appear anywhere in the
book. This is intentional; I have deliberately been as vague as possible
(except in §9.3) about the features of the set theory which I am using, since
it really doesn’t matter. Topos theory is an elementary theory, and its main
theorems are not—or ought not to be—dependent on recondite axioms of
set theory. (In fact 1 am a fully paid-up member of the Mathematicians’
Liberation Movement founded by J. H. Conway [157].) If pressed, however,
I would admit to using a Gédel-Bernays-type set theory having a distinction
between small categories (sets) and large categories (proper classes); but 1
also wish to consider certain ‘“very large™ 2-categories (notably €at and
Top) whose objects are themselves large categories. If Iwished to be strictly
formal about this, I should need to introduce at least one Grothendieck
universe; but since all the statements I wish to make about €at and Top
are (equivalent to) elementary ones, there is no real/ need to do so. In order to
retain some set-theoretic respectability, I have limited myself to considering
sheaves only on small sites; this has the disadvantage that we cannot state
Giraud’s theorem in its slickest form (a category is a Grothendieck topos iff
it is equivalent to the category of canonical sheaves on itself), but is otherwise
not as irksome as the authors of [GV] would have us believe.

Finally, I have to state my position on the most controversial question in
the whole of topos theory: how to spell the plural of topos. The reader will



