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Chapter 1

Properties of Ceramics

Rainer Telle

Institut fur Gesteinshuttenkunde der, RWTH Aachen, Aachen, Germany

1.1 INTRODUCTION

Altflough ceramic materials for technical application have been known for
more than two hundred years, especially-designed synthetic ceramics, unlike
traditional materials in composition, microstructure, and properties, have been
developed since approximately 1970. Whereas silicate ceramics and refractory
materials are basically derived from natural minerals and manufactured by com-
paratively simple processing steps, this new class of materials, the “advanced”,
“high-tech,” or in Japanese terms “fine” ceramics require an entirely different
fabrication route starting from chemically well-defined, fine, highly-purified,
and artificial raw materials. These materials have been created for distinct ap-
plications in which other conventional materials like metals or polymers have
failed. Due to the large variety of chemical, electrical, biological, and mechani-
cal properties that ceramics presently exhibit, there is almost no social and in-
dustrial application without ceramics (Table 1.1). In the electronic and manu-
facturing industries, as well as in technologies that require materials sustaining
extremely high temperatures and corrosive environments, high-tech ceramics
play the role of key materials; fiovel technologies, processes, and machines are
finally made possible only by means of especially tailored ceramics.
Surprisingly, this development was initiated by metal scientists or -more
precisely - by powder metallurgists rather than by traditional ceramists. The rea-
son for this is that the manufacturing route used for the production of metallic
parts by powder molding and compaction followed by subsequent consolidation
by a heat treatment, i.e. sintering, was investigated fundamentally since the turn
of the century for steel, refractory metals, and since 1920, for hard metals which
could not be casted or molded otherwise. With regard to natural multicompo-
nent raw materials and comparatively simple chemical systems, the basic under-
standing of these originally “ceramic™ processing procedures was much easier
than in the case of traditional ceramics. Thus, the break through in the science
of sintering was achieved in 1970 to 1980 yielding knowledge on the repro-
ducible production of high-performance powder and metallurgically-prepared

Handbook of Ceramics Grinding and Polishing. http:/dx.doi.org/10.1016/B978-1-4557-7858-4.00001-7
Copyright @ 2015 Elsevier Inc. All rights reserved. 1
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TABLE 1.1 Classes of Ceramics and Fields of Application

Materials Group Properly Application
Compressive Strength Bricks
Traditional Density + Strength Ceramic Hollow Ware
Ceramics Density + Wear Resistance Structural Clay Products
Heat and Corrosion Resistance Refractories
Structural Hardness Grinding Grits and Disks
Ceramics Strength + Toughness Engineering Ceramics
' Biocompatibility, Bioactivity Bioceramics
Nuclear Properties Nuclear Ceramics
Corrosion Resistance Chemoceramics

Catalytic Properties =

Functional Electric Resistivity Electroceramics
Ceramics Dielectric Properties
Magnetic Susceptibility Magnetoceramics
D?ﬁ’phaneity, Anisotropic Optoceramics

Optical Properties

parts. Being easily transferred to ceramics of “simple”™ composition, the foun-
dation for the development of tailored microstructures with as-desired prop-
erties was created. The simultaneous development of high-toughness zirconia
and highly wear-resistant silicon nitride ceramics indicated a promising way to
overcome the most important disadvantage of traditional ceramics: their brit-
tleness. The capability of the entire control of residual porosity together with
the so-called transformation toughening by zirconia as well as the sciende of
phase relationships in multicomponent systems that yielded the opportunity to
synthesize silicon nitride -based high-temperature materials initiated a world
wide boom in ceramic research and development. Figure 1.1 shows one of the
many predictions for future markets and turn-over opportunities related to the
various branches of application. To further the collaboration between industry
and research institutes, large investments in ceramic development and research
programs by industrial countries have been implemented. As a consquence of
these efforts, a novel understand of matter was achieved in the field of fracture
mechanics yielding insights in toughening phenomena and reinorcing strategies
for static and dynamic load. Models for the prediction of the long-term behavior
of complex parts have been derived, and the term “fatigue” was described in
respect to brittle fracture originating from microstructura defects which have
been quantified by means of statistics. High-resolution electron transmission
microscopy gave information about the internal structure of grain boundaries
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FIGURE 1.1 Market forecast for high-performance ceramics. (Courtesy, Hoechst 1988)

and thus enhanced the development of creep resistant high-temperature silicon
nitride based monoliths. Micro- and nanoscaled molding techniques brought
about new possibilities to manufacture electrically and electronically active ce-
ramics: ubiquitous components of modern electronic devices. Additionally, the
invention of the ceramic high-femperature superconductors contributed to the
tremendous increase in materials research.

Not in all cases, however, have ceramics been able to meet the sometimes
extraordinarily high demands of the applying industry. The progress in under-
standing the particular influence of the manufacturing procedures to the micro-
structure and mechanical properties was slower than expected. The market did
not develop as projected due to the lack of reliability of the ceramic parts and
due to problems in its acceptance by construction engineers. Furthermore, the
request for high quality products led to high-cost raw materials and products
which had some time to compete with metals or even with polymers. Thus,
some strategic investments by big companies came too early and turned out
risky, especially in Europe, but the competition with Japan and the United
States, as the two most important providers of advanced ceramics, was severe.
Imports from Japan where part development and production was strongly sup-
ported and funded by the government, were sometimes preferred to imports
from the European providers.



