W

MEEKEE moiye

(RIZhR - 56 2 hiR)

A
vy

M’ANAGING SOFTWARE

REQUIREMENTS
SECOND EDITION

A USE CASE APPROACH

N LEFFINGWEL.
DON WIDRIG

Foreword by Ed Yourdon

P OBJECT TECHNOLOGY

boocH
8 JACOBSON
RUMBAUGH

= SERIES EDITORS Dean Leffingwell

() Don Widrig

mmlﬂ&ma
China Machine Pres

(Z 8B B B B &

English reprint edition copyright © 2004 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Managing Software Requirements: A Use Case Approach,
Second Edition (ISBN: 0-321-12247-X) by Dean Leffingwell and Don Widrig, Copyright © 2003.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

AP H SR EN R i Pearson Education Asia Ltd BAUIAR Tolk 4 BRI AR . R R
HHEFT, ABLUEM T RE RSP EABHNE,

R FHEARKNEEN (REETPETE . B IMFNTHKATEEEREK) 8
B R1T.

AP E WA Pearson Education (BEHE HIER) MRS, TiRgERE8
ME,

[BALERE , AR,

ZAYUREBEIZE: BF: 01-2004-0312
HBERRE (CIP) Hig

ROFREHE. APITE (BESUR - F200) / (£) 35K (Leffingwell, D.) £
-JbAT: PRIk H AL, 20042

(ZHFRRAE)
$4B3C; Managing Software Requirements: A Use Case Approach, Second Edition

ISBN 7-111-13787-6
. % T.3%- N.%EHFE-¥EX V.TP311.52
B A B BIHCIPHIE S (2003) 51266485

BUR TV R R BSK E FEAR22S BB 100037)
LGS BiRE

LR EFAENRITENRI « AEBEILR BT L AT
200442 A 55 LRSS 15CER R

787mm x 1092mm 1/16 - 33,75Ep3k

Ep¥. 0001 - 3 0007}

SEfT: 55.0070

NES, WAEER., BRI, R, maitBIT%iEk
AHMHEHL . (010) 68326294

BB BE

NEEXUMRE, BEBEKAOPBEEHNZESERMNERRN, FETFEREARBENE
NIRRT ZHERNES; BERXFENESE, FXEEGFRERRRNATEFERERE
. MO, ERVARHERT, FENTLASHERABEREFT LSS, HEN¥RF
B Z RN} F o) S AR B REE N BRTLR, mE I ENSRBEEE, RUBRTHR
BB, RIBETHARMRE, RHBERAE, RAF¥EME, HMEARELEEA R
o vEaR o

A, E2RERMAXBNESNT, RENTENSLERBIE, MEWAABERBD S
BYl. XXHEVHERMGRAHELIE, WERS; MWELEMHBRRERTRE LS
BEERE, EREGERARRENERE. MLARBRLHIRT, RS R XERELHT
FHRER BT ERRENEBEMNE FLSEBEE2A, B, SI#E—EMEE T
BUBHMESRET AT FLNRBEFRROESIER, BRS5iHREN., ZRETENHE
R—MRZEHLHZF,

LR Tk At e EE UE B AR A AR EEIRE “HIRERNHETRS . B 1998ETF 1,
HENFRE TFEARET . BREREIMBEEM L. 23ILENRBE S, RIS
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZitt R #4Z HERA IR TR
WHIEIERR, WENBH WEE Fr#06 F Bk i Tanenbaum, Stroustrup, Kernighan, Jim
Gray ¥ KIF AR —MEHIER, LU HEMBEAE RERBR, HiEE2T . BRLFE
o REALRMSE, WEERRTXENBIGOMEHE,

“THENBEAS” IR TSR TEANEEWRABE, BANERAMURET FE
MRS, EARFEHWRIETHRNERNIE; MEBMESOEYLERERESE
MR, FRELEIHBYPRERER. B4, “HEIBEAE B2NURTETA RS,
XELHFHEEEPRIITRENOR, HEFZHERRANERBRHMSELERE, k5%
ITERRBITT T RELAER,

FEEFR BBV S BB SRR R, BF RXE MBI a9 R F 8
WEA—NFRNE . i, EEARBIMKTI M HE, & “EERT HARUZTF
HR=EARIIT OB : B HENREAB 250, WHEPARA AT, SR &
“GUFIREE ; Fit, SI%LXBETHEEHSH “Schaum’s Outlines” REFIHR “4 X5
WEIJH/IRA . HTREX=ZBEA BB, Fetdh T EiFm 2R meiime, &
ERABETPEMER. LRK¥, HERE, EBHRE. SAK%. FEGELY,
BE RS, WILK%, PEBHAY. BRETW Y. FBELE L2, hEARKE, Jpa
MZMRKE . AR, Pk, BREBT Y, SMA%. WihT 2. +EE

FIERLRESWITENEF L EEANE S KFEMBVMETENN SN TR ELFEAR “%
REIERE”, ARMEMEEE RN RLEE.

X =ENB ML E RS MERMNREMEE, YENERMNIHTEILREXE VK
ST, HhirZ8# B WM. 1. T., Stanford, U.C. Berkeley, C. M. U. Zittf4; i
KERH. MUBETERFEI. SIEEH. BERS. HBVEKREW. BUEE. SRE
B, RHEIRE. BE%. EEEMNE. BREFSFEARETENS VSR ZOEOERE,
mAE&RFE AL ABETRITEZTF. FRFL=HENAE. AHCHELSHANILE
BBk, EXERBEENEMRIENIESZT, RELBETENR 2N TR hEg
MAZ,

BURHIVESE . MMM . —RMNEE . RO, BANRS, SEFHEFRITGE
BHETHEENRIE, ERMNVERERERE, MRENELERBITAZX—&KE BRNE
BER B, EHMRMBRRAREINNGERSMES . LEARWIDZITHIRE X RITN TSR ®
BURATHEE, RINVWBERFENT .

L F#R4F: hzedu@hzbook.com
BEEHIE: (010) 68995264

BRAMI: R TERR G IEREE S
BRBL4 TS . 100037

B
%25
AR
Bk
%
A=

EREBRERE

R
5
FHE
s 7 4
CEX
#E 2

=]

W
g

Bt
M

W 3

AL A&

YA
FEF
F 5
R &k
R &3
764k R

2 I

B

W B
A 25

(R REBIRT)

48

X] L

s @Y1
* %
FEF
I vey 2%
ERN 2
A EIR
A C)

Wy e 3

S dE Y
* B &
WAF
Fl1h 4
E
JE 4t
A2 B 9%

This book is dedicated to Becky, my wife and my best friend.

—Dean

This book is dedicated to my book partner, Dean, who made this effort worthwhile,
and to my life partner, Barbara, who makes life worthwhile.

—Don

FOREWORD

By Ed Yourdon

" THE ROCK PROBLEM

One of my students summarized the issues discussed in this book as the
“rock” problem. She works as a software engineer in a research laboratory,
and her customers often give her project assignments that she describes as
“Bring me a rock.” But when you deliver the rock, the customer looks at it for
a moment and says, “Yes, but, actually, what I really wanted was a small blue
rock.” The delivery of a small blue rock elicits the further request for a spher-
ical small blue rock.

Ultimately, it may turn out that the customer was thinking all along of a
small blue marble. Or maybe he wasn’t sure what he wanted, but a small blue
marble would have sufficed.

At each subsequent meeting with the customer, the developer may exclaim,
“You want it to do what?” The developer is frustrated because she had some-
thing entirely different in mind when she worked long and hard to produce a
rock with the characteristics she thought the customer said he needed; the
customer is equally frustrated because he’s convinced that he has expressed it
clearly. These developers just don’t get it!

To complicate matters, in most real projects, more than two individuals are
involved. In addition to the customer and the developer—who may, of course,
have very different names and titles—there are likely to be marketing people,
testing and quality assurance people, product managers, general managers,

- and a variety of “stakeholders” whose day-to-day operations will be affected

by the development of the new system.

All of these people can become frustrated by the problems of specifying an ac-
ceptable “rock,” particularly because there often isn’t enough time in today’s

competitive, fast-moving business world to scrap an expensive, two-year “rock

XX

FOREWORD

project” and do it all over again. We’ve got to get it right the first time yet also
provide for the iterative process in which the customer ultimately discovers

what kind of rock he wants.

It’s difficult enough to do this when we’re dealing with tangible, physical arti-
facts like rocks. Most business organizations and government agencies today
are “information intensive,” so even if they’re nominally in the business of
building and selling rocks, there’s a good chance that the rock contains an
embedded computer system. Even if it doesn’t, there’s a good chance that the
business needs elaborate systems to keep track of its e-commerce rock sales,
its rock customers, its rock competitors and suppliers, and all of the other in-
formation that it needs to remain competitive in the rock business. More-
over, for thousands of companies today, those companies whose business is
dedicated exclusively to the development and sales of software products, their
entire business focuses on making their products—intangible and abstract as
they are—into tangible rocks that their customers can purchase, evaluate,

and apply.

Software systems, by their nature, are intangible, abstract, complex, and—in
theory, at least—“soft” and infinitely changeable. So, if the customer begins
articulating vague requirements for a “rock system,” he often does this on the
assumption that he can clarify, change, and fill in the details as time goes on.
It would be wonderful if the developers—and everyone else involved in the
creation, testing, deployment, and maintenance of the rock system—could
accomplish this in zero time, and at zero cost, but it doesn’t work that way.

In fact, it often doesn’t work at all: More than half of the software systems
projects taking place today are substantially over budget and behind sched-

- ule, and as much as 25 percent to 33 percent of the projects are canceled be-

fore completion, often at a staggering cost.

Preventing these failures and providing a rational approach for building the sys-
tem the customer does want is the objective of this book. However, this is not a
book about programming, and it’s not written just for the software devel-
oper. This is a book about managing requirements for complex software ap-
plications. As such, this book is written for every member of the software team
(analysts, developers, tester and QA personnel, project management, product
management, documentation folks, and the like) as well as members of the ex-
ternal “customer” team (users and other stakeholders, marketing, and manage-
ment)—everyone, really, who has a stake il the definition and delivery of the
software system. A

T

FOREWORD Xxi

You’ll discover that it is crucial that the members of both teams, including
the nontechnical members of the external team, master the skills required to
successfully define and manage the requirements process for your new sys-
tem—for the simple reason that they are the ones who create the require-
ments in the first place and who ultimately determine the success or failure
of the system. The stand-alone, hero programmer is an anachronism of the
past: May he rest in peace.

A Simple Metaphor: Building a House

If you were a building contractor, you wouldn’t need to be convinced that a
series of critical conversations with the homeowner are necessary; otherwise,
you might end up building a two-bedroom house when your customer
wanted a three-bedroom house. But it’s equally important that these “re-
quirements” be discussed and negotiated with the government authorities
concerned with building codes and zoning regulations, and you may need to
check with the next-door neighbors before you decide to cut down any trees
on the property where the house will be built.

The building inspector and the next-door neighbors are among the other
stakeholders who, along with the person who intends to pay for and inhabit
the house, will determine whether the finished house meets their needs. It's
also clear that these important stakeholders of your system, such as neigh-
bors and zoning officials, are not users (homeowners), and it seems equally

- obvious that their perspectives on what makes a quality home may differ

from the homeowner’s opinion.

Again, we’re discussing software applications in this book, not houses or rocks.
The requirements of a house might be described, at least in part, with a set of
blueprints and a list of specifications; similarly, a software system can be de-
scribed with models and diagrams. But just as the blueprints for a house are in-
tended as a communication and negotiation mechanism between laypeople
and engineers—and lawyers and inspectors and nosy neighbors—so the
technical diagrams associated with a software system can also be created in
such a way that “ordinary” people can understand them.

Many of the crucially important requirements don’t need any diagrams at all.
The prospective house buyer, for example,‘can write a requirement in ordi-
nary English that says, “My house must have three bedrooms, and it must
have a garage large enough to hold two cars and six bicycles” As you'll see in
this book, the majority of the crucial requirements for a software system can

xxii FOREWORD

-—

The book is struc-

tured on the six
requisite team
skills for effective
requirements
management.

be written in plain English. In other cases, it would be more helpful to have a
picture of what kind of fireplace the homeowner had in mind.

Many of the team skills you will need to master in order to address this chal-
lenge can also be described in terms of practical, commonsense advice. “Make
sure you talk to the building inspector,” we might advise our novice house
builder, “before you dig the foundation for the house, not after you've poured
the cement and begun building the walls and the roof.” For a software project,
we would offer similar advice: “Make sure you ask the right questions of the
right people, make sure that you understand how the system is going to be
used, and don’t assume that 100 percent of the requirements are critical, be-
cause you're not likely to have time to finish them all before the deadline.”

ABOUT THIS BOOK

In this book, Leffingwell and Widrig have taken a pragmatic approach to de-
scribing the solution to the rock problem. They have organized the book into
eight parts. The Introduction provides some of the context, definitions, and
background that you'll need to understand what follows. Chapter 1 reviews the
systems development “challenge.” The data shows that some software project
failures are indeed caused by sloppy programming, but a number of studies
demonstrate that poor requirements management may be the single largest
cause of project failure. And though I've described the basic concept of require-
ments management in a loose, informal fashion in this foreword, the authors
will define it more carefully in Chapter 2, in order to lay the groundwork for
the chapters that follow. Chapter 3 provides an overview of some of the soft-
ware development models in use today and concludes with a recommendation
for an iterative process, one that facilitates additional requirements discovery
along the way. Chapter 4 provides a brief introduction to some of the charac-
teristics of modern software teams so they can relate the team skills that will be
developed to the team context, wherein the skills must be applied.

Each of the next six major parts is intended to help you and your team under-
stand and master one of the six requisite team skills for effective requirements
management,

® To begin, of course, you will need a proper understanding of the
problem that’s intended to be solved with a new software system. That
is addressed in Team Skill 1, Analyzing the Problem.

® Team Skill 2, Understanding User and Stakeholder Needs, is also
crucial.

FOREWORD xxiii

® Team Skill 3, Defining the System, describes the initial process of
defining a system to address those requirements.

= Team Skill 4, Managing Scope, covers that absolutely crucial and
often ignored process of managing the customer’s expectations and
the scope of the project. '

® Team Skill 5, Refining the System Definition, illustrates key tech-
niques that you will use in order to elaborate on the system to a level
of detail sufficient to drive design and implementation, so the entire
extended team knows exactly what kind of system you are building.

® Team Skill 6, Building the Right System, discusses the processes associ-
ated with building a system that fulfills the requirements. Team Skill 6
also discusses techniques you can use to validate that the system meets
the requirements and, further, to help ensure that the system doesn’t
do anything malevolent to its users or otherwise exhibit unpleasant
behaviors that are not defined by the requirements. And, since require-
ments for any nontrivial application cannot be frozen in time, the
authors describe ways in which the team can actively manage change
without destroying the system under construction. Team Skill 6 con-
cludes with a chapter that suggests ways in which the requirements
gathering process can improve the quality of the overall project. Spe-
cial emphasis is given to the iterative nature of modern program devel-
opment processes and how this yields substantial opportunities for an
ongoing quality assessment.

After these descriptions of specific requirements management techniques,
the authors briefly review the evolving methods of Extreme Programming
and Agile Methods and demonstrate ways of integrating effective require-
ments management practices into the framework of these software develop-
~ment methods. Finally, in Chapter 31 the authors provide a prescription that
you and your team can use to manage requirements in your next project.

Thope that, armed with these newly acquired team skills, you too will be able
to build the perfect rock or marble. However, it will never be easy; even with
the best techniques and processes, and even with automated tool support for
all of this, you'll still find that it’s hard work. Moreover, it’s still risky; even
with these team skills, some projects will fail because we’re “pushing the en-
velope” in many organizations, attempting to build ever more complex Sys-
tems in ever less time. Nevertheless, the skills defined in this book will goa
long way toward reducing the risk and thereby helping you achieve the suc-
cess you deserve,

PREFACE TO THE SECOND EDITION

By Dean Leffingwell

Much has transpired since the first edition of this text was published in 1999.
The “dot.com” bubble economy of the late 1990s (driven in part by the Inter-
net, software, and related technology) has burst, causing significant disrup-
tion, economic uncertainty, and chaos in the lives of many. And yet, perhaps
order and sanity have been restored to a free market that appeared to have
“lost its wits” for a time. -

However, innovation in software technology continues unabated, and the in-
dustry as a whole is still growing rapidly. The global reach of the Internet
continues to change our lives and drive new, varied forms of communica-
tion, from the global electronic marketplaces that facilitate the exchange of
goods and services to the after-school instant messaging chat-fests that seem
to absorb our children’s homework time and so much of that expensive In-
ternet bandwidth we rolled out in the last decade.

We are connected to our business associates, friends, and family 24/7. Inter-
net cafes in Australia, in Scotland, and on Alaska-bound cruise ships arz
open 24 hours a day. We receive e-mails on our PDAs at the grocery store. We
can’t make breakfast, drive to work, ride an elevator, or enter an office build-
ing without interacting with software. Software has become the embodiment
of much of the world’s intellectual knowledge, and the business of develop-
ing and deploying software has emerged as one of the world’s most impor-
tant industries. '

Software development practices continue to march forward as well. The Uni-
fied Modeling Language (UML), adopted as late as 1997, is now the de facto
means to communicate architecture, patterns, and design mechanisms. The
Rational Unified Process and similar processes based on the UML are being
adopted by many in the industry as the standard way to approach the chal-
lenge of software development.

PREFACE TO THE SECOND EDITION xxXv

Our personal lives have changed also. After four years at Rational Software,
recently acquired by IBM, I have moved on to helping independent software
companies achieve their goals. Some teams hope to change the world; some
hope to have a significant impact on individual lives by improving health
care; still others hope to improve their customers” manufacturing efficiencies
or to help businesses grow by translating product data into other languages.
However, these teams all have one thing in common: they are challenged by
the difficulty of defining software solutions in a way that can be understood
by themselves, by their customers, by their marketing teams, by their internal
development and testing teams—indeed, by all those who must understand
the proposed solution at the right level of detail so that the proper results can
be achieved. Fail to do that and they fail to achieve their mission. Because of
the importance of their mission on their personal lives as well as those whose
products they are intended to help, failure is not an option.

Therefore, while much has changed in the software industry in just a few
short years, some things, including the challenge of Managing Software Re-
quirements, remain largely the same, and so our work continues in this, the
second edition.

ABOUT THE SECOND EDITION

The motivation for the content changes in the second edition is based on dif-
ferent yet convergent factors.

The first set of factors is based on the success of the book in the marketplace,
which has generated many positive comments and much encouragement, as
well as constructive criticisms. While comments range widely, two consistent
‘themes emerged.

® The “more use cases” theme. The first edition (subtitled A Unified
Approach) reconciled and combined two major viewpoints on re-
quirements techniques. The first, perhaps a more traditional ap-
proach, described the way in which requirements specifications are
created and detailed to prescribe system behavior using declarative
techniques (“the system shall ..). The second, the use case ap-
proach, described the way in which use cases could be used to define
the majority of the functional behavior of the system. We combined
these techniques in the first edition in order to create a common, and
hopefully more holistic, approach. Based on feedback, we did
achieve some success, However, one criticism of the work is that,

xxvi

PREFACE TO THE SECOND EDITION

while we recommended and described the use case method, we did
not go far enough in helping the reader develop or apply this tech-
nique. Moreover, in presenting both techniques, we confused some
readers who wanted to better understand which technique to apply
and when.

® The “it’s a big book with many techniques—please be more pre-
scriptive” theme. The first edition of this book was intended to be a
comprehensive work, a one-stop-shopping reference for any tech-
nique readers might need to define requirements for a system of any
type. We hope this provided value to our readers because we truly
believe that there is no “one size fits all” solution to each specific sofi-
ware engineering challenge. And yet, the reviewers’ theme remains:
“Does it have to be this hard? Can’t you be more prescriptive?”

A second set of factors driving this same theme is based on my own experi-
ences in using the book as I work with companies to help them achieve their
software development objectives, Some have software applications that re-
quire multiple techniques; some can make time for a fairly rigorous intro-
duction to a full requirements management discipline. However, others need
to document a specific set of requirements for a specific software application
and they need to do so immediately. Starting tomorrow. There is no time or
interest in a debate about which technique might be more effective or about
the nuances of anything. “Just give me one technique, make it simple, and get
me started right now,” they say.

Fortunately, these two sets of inputs are mostly convergent and the answer to
both is fairly clear. For most teams, in most circumstances, a combination
of (1) a well-considered Vision document, (2) an identification and elabo-
ration of the key use cases to be implemented, and (3) a supplementary
specification of the nonfunctional requirements is adequate and appropri-
ate for managing software requirements. In addition, if this is the chosen
method, the elaborated use cases can directly become the foundation for sys-
tem testing.

To this end, this second edition of Managing Software Requirements has new
content, a new theme, and a new subtitle: A Use Case Approach. In this edition,
the use case technique is the cornerstone technique, and a more prescriptive ap-
proach has been chosen and represented. For example, Chapter 14, A Use Case
Primer, has been added to provide a more fundamental basis for understanding
and applying use cases. It should serve as a tutorial adequate for an otherwise
uninitiated individual to be able to learn and begin to apply the technique. The
HOLIS case study has also been updated to reflect a more use-case-centered

PREFACE TO THE SECOND EDITION xxvii

approach. Chapter 26, From Use Case to Test Case, has been added to illustrate
how the use cases can directly drive a comprehensive test strategy as well as
serve as direct input to the test cases themselves.

In addition, we’ve made one substantial enhancement motivated solely by our
own purposes. Chapter 17 (which appeared in the first edition as Chapter 18,
The Champion), has been renamed Product Management and enhanced with
new material designed to help teams understand how to turn a software appli-
cation into what we call the whole product solution. Since getting the require-
ments “right” cannot by itself ensure commercial success, this chapter provides
insight and guidelines for those activities (such as pricing and licensing, posi-
tioning and messaging) and other commercial factors that transform a work-
ing software application into a software product people want to buy.

Also, since modern software development processes are becoming more iter-
ative, we decided to repurpose the first edition’s chapter on quality so that
this edition’s chapter would provide a more comprehensive look at quality
within the context of a modern software process. Thus Chapter 29, Assessing
Requirements Quality in Iterative Development, speaks directly to iterative
techniques for gathering and improving requirements within an overall iter-
ative development framework.

Finally, we also took the opportunity to address a new undercurrent in the in-
dustry, a movement toward what are perceived as lighter, less formal methods.
In the extreme, Extreme Programming (XP), as espoused by Beck and others,
could be interpreted to eliminate process entirely. Perhaps more correctly, XP
incorporates certain keystone processes, such as direct customer requirements
input, directly into programming practices, but it’s also fair to note that the
concepts of “software process” and the “M” word (methodology) are studi-
ously avoided. Perhaps less extreme and considered by some to be more prac-
tical, the introduction of Agile Methods, as advocated by Cockburn and
others, has also taken root. Though controversial in some circles, these lighter
approaches cannot be ignored, and we’ve addressed these in the requirements
context in another new chapter, Chapter 30, Agile Requirements Methods.

Of course, no book can be all things to all people. In order to make this edi-
tion as readable as possible, we eliminated a number of topics and chapters
from the prior version and shortened others.

We sincerely hope that you will find this revised text more approachable, as
well as easier to use and apply, and that it will better help you and your teams
to manage your software requirements.

xxviii

PREFACE TO THE SECOND EDITION

ACKNOWLEDGMENTS

The authors would like to acknowledge and thank John Altinbay, Jim Heu-
mann, and Dan Rawsthorne for their careful and insightful reviews of this
second edition. We’d also to thank the many others who contributed to this
work, including Al Davis, Ed Yourdon, Grady Booch, Philippe Kruchten, Le-
slee Probasco, Ian Spence, Jean Bell, Walker Royce, Joe Marasco, Elemer Mag-
aziner, and the following reviewers of the first edition: Ag Marsonia, Frank
Armour, Dr. Ralph R. Young, Professor David Rine, and Dan Rawsthorne.

We admit that without their insightful comments, we could not have written a
worthy work. In addition, we’d like to thank Kim Arney Mulcahy and the edi-
tors and support staff at Addison-Wesley, who tuned our work in process and
helped it become a tangible product, like the “rock” described in the Fore-
word. Lastly, we must again thank our loving families for supporting all the
“heads-down weekends” necessary to complete this second edition.

