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PREFACE

One must never exhaust a subject to the point
that the reader has nothing left to do.
It is not a matter of inducing to read, but of inducing to think.

Charles-Louis de Montesquieu

The numerical solution of differential problems of practical interest may often
lead to large-scale algebraic systems. Modern supercomputers make it possible
nowadays to afford a wide range of problems that were unaffordable until re-
cently. However, the size of most of such problems is so large that substantial
attention needs to be paid to the improvement of existing numerical algorithms,
as well as to the development of new ones that may better fit the architecture
of available supercomputers.

Domain decomposition for the numerical solution of partial differential equa-
tions is a relatively new field (the first important ideas emerged in the early
eighties). In particular, it is one of the most significant ways for devising parallel
algorithms that can benefit strongly from multiprocessor computers. Parallel ap-
proaches are mandatory for very large-scale numerical problems like those that
arise very often in many branches of physics and engineering.

Any domain decomposition method is based on the assumption that the given
computational domain, say 2, is partitioned into subdomains £;,: =1,..., M,
which may or may not overlap. Next, the original problem can be reformulated
upon each subdomain ;, yielding a family of subproblems of reduced size that
are coupled one to another through the values of the unknown solution at sub-
domain interfaces.

Very often the interface coupling is removed at the expense of introducing
an iterative process among subdomains, yielding at each step independent sub-
problems (of lower complexity) upon subdomains, which can be efficiently faced
by multiprocessor systems.

When properly devised, these iterative procedures intrinsically embody a pre-
conditioner for the system induced on the interface unknowns. A distinguishing
feature of a domain decomposition method is the property of optimality of such
a preconditioner; that is, its capability of generating a sequence that converges
at a rate that does not depend on the size of the original system.

A zonal multi-domain approach can better account for multiple-scale solu-
tions such as those occurring in highly structured flows in fluid dynamics,or in
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fractured materials in structural mechanics.

Furthermore, domain decomposition can easily encompass the use of dif-
ferent numerical schemes within different subdomains, accounting for diverse
behaviours of the physical solution. Even further, they allow the use of differ-
ent kinds of equations in different subdomains whenever the physics behind the
problem has a variable nature therein. This is the case, for example, for viscous-
inviscid flow interactions in boundary layers, or the coexistence of heterogeneous
materials (insulator and conductor) in electromagnetism.

In this book we illustrate the basic mathematical concepts behind domain
decomposition. For any given partial differential equation we derive its multi-
domain formulation from the analysis of transmission conditions at subdomain
interfaces. The relationship with the Steklov-Poincaré problem at subdomain
interfaces is illustrated.

Concerning the finite dimensional approximation of the problems that are
treated in this book, we confine ourselves to finite elements, purely for the sake
of exposition. As a matter of fact, most of our analysis can be applied to any
family of Galerkin approximation, such as, for example, spectral element methods
or the h—p version of finite elements.

A large variety of boundary value problems is addressed, including symmet-
ric elliptic equations, advection—diffusion equations, the elasticity problem, the
Stokes problem for incompressible and compressible fluids, the time-harmonic
Maxwell equations, parabolic and hyperbolic equations, and suitable couplings
of heterogeneous equations.

We consider both overlapping and non-overlapping subdomain decomposi-
tions (although we pay more attention to the latter), and analyse the convergence
of several iterative procedures among subdomains.

The reader may feel that this book is mainly confined to a simple decompo-
sition in two subdomains. Actually, this has been a deliberate choice, stemming
from the consideration that difficult concepts can be more easily addressed in
this context. Moreover, this simple partition is suitable for carrying out the sen-
sitivity of domain decomposition algorithms with respect to the grid refinement.
The scalable property of the algorithms in terms of the number of subdomains
requires instead an ad hoc analysis, which we sketch for elliptic problems only.

We develop the algebraic part of the algorithms, but mostly focus on the
differential interpretation of the numerical methods that we propose. In other
words, our attention focuses more on the solvers than on the preconditioners.
Indeed, this viewpoint is more suitable for envisaging how to extend these meth-
ods to new types of equations and even to heterogeneous situations such as those
described earlier.

An outline of this book is sketched below. In Chapter 1 we present the math-
ematical foundation of domain decomposition methods for both overlapping and
non-overlapping domain partitions, in the case of symmetric elliptic equations.
Also, we illustrate the relationship with the Steklov—Poincaré problem at subdo-
mains interfaces.
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In Chapter 2 we consider the finite element approximation of the Steklov~
Poincaré interface problem, as well as its relation with the Schur complement
matrix. A brief presentation of non-conforming domain decomposition methods
is also included.

In Chapter 3 the finite element approximation of the domain decomposi-
tion algorithms presented in Chapter 1 is addressed. In particular, we introduce
many preconditioners for the Schur complement matrix based on a substructur-
ing strategy.

The main theoretical convergence results are contained in Chapter 4. First
of all, we focus on three extension theorems, which prepare the basis for the
analysis of the convergence of substructuring iterative methods. Then we give
some abstract convergence theorems for Krylov-type iterations, which are used
for showing the convergence of Dirichlet-Neumann and Neumann-Neumann al-
gorithms. The analysis of Robin and Schwarz domain decomposition methods is
also presented.

Chapter 5 is devoted to the formulation and analysis of domain decompo-
sition methods for other boundary value problems; precisely, non-symmetric el-
liptic problems, the linear elasticity problem, the Stokes problem (for both in-
compressible and compressible flows), the first-order advection problem, and the
time-harmonic Maxwell problem.

Some domain decomposition methods specifically suited for advection—~diffu-
sion equations are presented and analysed in Chapter 6.

Time-dependent problems are addressed in Chapter 7, for both parabolic and
hyperbolic operators. In particular, we evaluate the impact of both implicit and
explicit time-advancing finite difference schemes on domain partitioning in space.
Non-linear evolution problems, especially the Navier-Stokes and Euler equations
in fluid dynamics, are also considered.

Finally, in Chapter 8 we describe several types of heterogeneous domain de-
composition methods, which are of particular interest in fluid dynamics and
electromagnetism.

We are grateful to Dr S. Adlung of Oxford University Press for his encourage-
ment and precious advice throughout this project. The assistance of the technical
staff of Oxford University Press is also acknowledged.

It is a pleasure to express our gratitude to many friends and colleagues who
made comments on the manuscript, in particular to A. Alonso, M. Dryja, Yu.A.
Kuznetsov and O. Widlund.

Finally, the authors wish to thank P. Gervasio, S. Micheletti and F. Saleri
for preparing the tables and figures.

Milan and Trento Alfio Quarteroni
July 1998 Alberto Valli
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1

THE MATHEMATICAL FOUNDATION OF DOMAIN
DECOMPOSITION METHODS

In this chapter the reader is encouraged to discover the mathematical founda-
tion of domain decomposition methods, which are based on partitions of the
computational domain into subdomains with or without overlap.

We introduce the concept of transmission conditions at subdomain interfaces
and the Steklov-Poincaré problem for the interface variables. Both differential
and variational formulations are addressed.

Then we present substructuring iterative methods for disjoint subdomains,
and the Schwarz alternating method for overlapping subdomains. The conver-
gence analysis of these methods will be carried out in Chapter 4. We also com-
ment on two other approaches: the fictitious domain method and the so-called
three-field method.

We deal mainly with symmetric linear elliptic boundary value problems, and,
in particular, with the Poisson problem:

—Au=f inQ
(1.1) {
u=0 on 99.

Here, and in the rest of this book, Q is a d-dimensional domain (d = 2,3),
with a Lipschitz boundary 912, whose outer unit normal direction is denoted by
n*, f is a given function of L?(), A := 2?:1 D;D; is the Laplace operator
and D; denotes the partial derivative with respect to z;, j = 1,...,d. To start

F16. 1.1. Non-overlapping partition of the domain Q into two subdomains.



2 THE MATHEMATICAL FOUNDATION OF DD METHODS Ch. 1

with, we assume that Q is partitioned into two non-overlapping subdomains 2,
and €, and denote by I' := Q; N Q; (see Fig. 1.1). We also assume that I is a
Lipschitz (d — 1)-dimensional manifold.

The generalisation to other boundary value problems will be done in later
chapters, particularly Chapters 5, 6 and 8.

The finite dimensional approximation is addressed in the next two chapters.

1.1 Multi-domain formulation and the Steklov—-Poincaré
interface equation

We indicate by u; the restriction to §);, i = 1,2, of the solution u to (1.1), and by
n' the normal direction on 8Q; NT, oriented outward. For simplicity of notation
we also set n = n'.

It is easily seen that the Poisson problem (1.1) can be reformulated in the
equivalent multi-domain form:

( —Aul = f in Ql
Uy =0 on 601 nonN
Uy = Ug onT
(L.1.1) < Buy B o
on ~ On
up =0 on 9Q; N N
\ —-AU2 = f in Qz.

Equations (1.1.1)3 and (1.1.1)4 are the transmission conditions for u; and u,
on I

The physical meaning of this split formulation is clear as soon as the original
solution of problem (1.1) is smooth enough (say, u € C*(2)). In a more general
framework the equivalence between (1.1) and (1.1.1) is shown in the next section
by resorting to the weak formulation of both problems.

We will see in Section 1.3 that domain decomposition methods are generally
amenable to iterative procedures for an interface equation that is associated with
the given differential problem. This interface problem can be defined in terms of
the Steklov—-Poincaré operator that we are going to introduce.

Let us refer to the model problem (1.1) and its multi-domain formulation
(1.1.1), which corresponds to the domain partition of Fig. 1.1. The same ar-
guments apply to the other boundary value problems that will be described in
Section 1.4 (for further details see also Quarteroni and Valli 19914, b).

Let A denote the unknown value of u on I'. We consider the two Dirichlet
problems:
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—Aw.,' = f in Qi
(1.1.2) w; =0 on 39,00Q
w; = A on I,

for i = 1,2. We can obviously state that
(1.1.3) wi = +uj,

where we have defined u? and u} to be the solutions of the following Dirichlet
problems:

-Aul =0 in;

(1.1.4) u) =0 on 99Q; N ON
ud =\ onT,

and
—Aul =f inQ

(1.1.5) u; =0 on 99; N ON
u; =0 onT.

For each ¢ = 1,2, u? is the harmonic extension of ) into ;, and will be denoted
H;)\. We will also write G; f instead of u].
If we proceed formally, comparing (1.1.1) with (1.1.2), it follows that

Owy _ 0wy .

(1.1.6) w; = u; forz=1,2 if and only if 3 = Bn

The latter condition amounts to the requirement that ) satisfies the Steklov-
Poincaré interface equation

(1.1.7) SA=yx onT,
where
d a
X:= %ng - é‘ﬁglf
.9
= - Z 6—gQif
=1 n

and S is the Steklov-Poincaré operator, which is formally defined as

(1.1.8)
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a 17
= —Hn— —H
Sn = o Hin = o~ Han
(1.1.9) 2 5
-3 et
&t Ont
=1
In particular, S can be split as S = S; + S;, with
1.1.10 S; -—a—H i=1,2
(1.1.10) in:= oM, i=12.

This operator, which was introduced a century ago (1896-1900), has been
more recently analysed by Agoshkov and Lebedev (1985) in the framework of
iterative methods. It is, however, worthwhile to point out that Agoshkov and
Lebedev in fact considered the inverse operators S;! and S, %, and called them
Poincaré-Steklov operators.

Remark 1.1.1 (Generalisation) The analysis that we are going to carry out on
the Poisson equation will be applied to a far more general differential problem
of the form

(1.1.11) Lu=f inQ,

where £ is a partial differential operator, f is a given datum, and u is the
unknown solution. A broad range of problems can be considered (see Chapter
5), including non-symmetric elliptic problems, the linear elasticity problem, the
Stokes problem for incompressible flows, the viscous and inviscid Stokes problem
for compressible flows, and the time-harmonic Maxwell system.

Should Q be partitioned into two disjoint subdomains 2, and €, as indicated
in Fig. 1.1, we can go along the same lines presented above to generate a split
version of problem (1.1.11). Denoting again for i = 1,2 by u; the restriction of
u to §2;, it follows from (1.1.11) that

L:Ul = f in 91

(1.1.12)

ﬁuz = f in Qg.
To guarantee the equivalence with (1.1.11) we need to enforce transmission con-
ditions between u; and uy across I'. In an abstract form, such conditions can be
expressed by the two relationships

®(u;) = ¥(uz) on T

(1.1.13)
¥(u1) = ¥(uz) on T,

where the functions ® and ¥ will depend upon the nature of the problem.

Typically, for second-order elliptic operators, (1.1.13) expresses the continuity
across I' of u and of the normal ‘flux’ (namely, the normal stress) involving first-
order derivatives of u; and u;. More generally, these interface conditions are
most often determined noting that:
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o The solution u belongs to a space of functions defined over the whole .
This requires that ujg, in Q1 and ujg, n Qy enjoy a certain regularity
therein, and in addition that they satisfy a suitable matching on T

o The restrictions u|q, and u|q, are distributional solutions to the given equa-
tion in Q1 and §)a, respectively. Another interface condition between them
comes from the fact that u in fact satisfies the equation in the sense of
distributions in the whole Q; namely, through the interface I' and not only
separately in 21 and Q.

For the Poisson problem (1.1.1) the obvious identification

d(v) =v, ¥(v) = g—z

holds true. Keeping in mind this correspondence, all iterative substructuring
methods that we are going to introduce for the Poisson problem in Sections 1.3,
1.4 can actually be extended to the more general problems (1.1.12), (1.1.13) in a
straightforward manner. This is the case, in particular, for the classical methods
like Dirichlet~-Neumann, Neumann-Neumann or Robin, originally introduced for
the Laplace operator, and here applied to a very general family of boundary value
problems (see Chapter 5). a

Remark 1.1.2 In transforming the Dirichlet boundary value problem (1.1) into
an equation on I', we have chosen as interface unknown the physical variable
that has to match on I' as described in the first condition in Remark 1.1.1,
while the interface equation (1.1.7) for the Steklov—Poincaré operator S is based
on ensuring that the second condition is satisfied. The same procedure will be
constantly followed in the remainder of this book, but clearly other choices of
interface equation could be devised. These are amenable to different forms of the
Steklov-Poincaré operator, and, correspondingly, different iterative substructur-
ing methods. 0O

1.2 Variational formulation of the multi-domain problem

In this section we formulate (1.1) in a variational way. This requires us to intro-
duce Sobolev spaces and to take into account some of their properties. We will
not dwell here on this argument, and refer the interested reader to the compre-
hensive presentation of this theory that can be found, for example, in J.-L. Lions
and Magenes (1972) (see also Chapter 9).

By integrating by parts in 2, it is easily seen that the weak formulation of
(1.1) reads

(1.2.1) find ueV : a(u,v) = (f,v) Yvey,

where
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(w,v) = / wv
a{w,v) = (%’w,Vv)
HY(Q) :={ve L*Q)|Djve L3Q),j=1,...,d}
HY(9) = {v € H'(R)] vjoq = 0}
% = HE ()
and vjpq denotes the trace of v (that is, its restriction) on 9. The norm of

H' () will be denoted by || - ||1,0, while || - ||o o will indicate the norm of L2(£).

We recall that
f[vllo,e = (v,v)'2,

while

d 1/2
[lvlli0 = (Hvllﬁ,n +Y HDwHﬁ,n)

i=1

for each v € H'(Q).
The Poincaré inequality states that there exists a constant Cqq > 0 such that

d
(1.2.2) / V¥ < Cn/ Z‘(Djv)2 Y v e HY(Q).
Q Q-

J=1

Therefore, the norm ||v|l; .o is equivalent to the norm ||Vu|oq for each v €
H}(Q). It is worthwhile to note that the same result is true for functions that
vanish only on an open and non-empty subset ¥ of 99.

We also recall that the trace space of H!(2) on the boundary 52 is denoted
HY2(8Q). In an analogous way, the trace space on an open and non-empty subset
¥ C 0Q is indicated by H'/2(E). The trace operator from H(Q) to H/2(8)
is surjective and continuous; that is, the following trace inequality holds

(1.2.3) liaallij2.0a < Chllvle  Vve HY(Q),

where || - |12 5o denotes the norm in H/2(99Q). Moreover, it can be shown that
there exist injective, linear, and continuous extension operators from H'/ 2(0Q)
to H'(Q).

Let us also consider the weak multi-domain formulation equivalent to (1.2.1).
First of all, let us set

(w,», U,‘)Qi = w; Vi
Q;
ai(wi, v;) = (Vwy, Voy)g,
(1.2.4) Vi = {v; € Hl(Qi)IUi;annan.- =0}
Ve = Hj ()

A = {n € H'/*(T) | = vjr for a suitable v € V}.



