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THE COSMOLOGICAL SINGULARITY

Written for researchers focusing on general relativity, supergravity, and cos-
mology, this is a self-contained exposition of the structure of the cosmological
singularity in generic solutions of the Einstein equations, and an up-to-date
mathematical derivation of the theory underlying the Belinski-Khalatnikov—
Lifshitz (BKL) conjecture on this field.

Part 1 provides a comprehensive review of the theory underlying the BKL
conjecture. The generic asymptotic behavior near the cosmological singularity of
the gravitational field, and fields describing other kinds of matter, is explained in
detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking
a general approach, this section does not assume any simplifying symmetry con-
ditions and applies to theories involving a range of matter fields and space-time
dimensions, including supergravities.

Overall, this book will equip theoretical and mathematical physicists with the
theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singularities,
their billiard description, and emergent mathematical structures.
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Preface

The first exactly solvable cosmological models of Einstein’s theory revealed the
presence of a very striking phenomenon: the Big Bang singularity. Since the
time it was discovered in 1922 by Alexander Friedmann, a fundamental ques-
tion has arisen as to whether this phenomenon is due to the special simplifying
assumptions underlying the exactly solvable models or whether a singularity is
a general property of the Einstein equations. This question was formulated for
the first time by L. Landau in 1959.

The question was answered by V. Belinski, I. Khalatnikov and E. Lifshitz
(BKL) in 1969. The BKL work showed that a singularity is a general prop-
erty of a generic cosmological solution of the classical gravitational equations
and not a consequence of the special symmetric structure of the exact models.
Most importantly, BKL were able to find the analytical structure of this generic
solution and show that its behavior is of an extremely complex oscillatory char-
acter, of chaotic type. Because it provides the description of a general solution
of the Einstein equations (i.e., a solution depending on sufficiently many freely
adjustable functions of space), the BKL analysis sheds light on intrinsic proper-
ties of Einstein gravity. Given the nonlinear character of the Einstein equations
and the difficulty of finding exact solutions without symmetries, the BKL results
are quite notable. They have a fundamental significance not only for cosmology
but also for the evolution of collapsing matter forming a black hole. The last
stage of collapsing matter will follow in general the BKL regime.

The chaotic oscillations discovered by BKL can be understood in terms of a
“cosmological billiard” system, where the cosmological evolution is described at
each spatial point as the relativistic motion of a fictitious billiard ball in the
Lorentzian space of the logarithmic scale factors. This reformulation of the BKL
behavior can be naturally extended to arbitrary matter couplings and dimensions
of space-time, enabling one to show that the BKL regime is inherent not only to
General Relativity but also to more general physical theories containing gravity,
such as supergravity models. The dimension of the billiard table and the nature



xii Preface

of the walls that bound it depend on the theory, but the billiard description
remains universally valid.

The billiard point of view provides a remarkably simple description of the
gravitational field in the vicinity of a spacelike singularity. In spite of the com-
plexity of the Einstein-matter field equations, the asymptotic behavior of the
fields near a cosmological singularity can be phrased in surprisingly elementary
terms involving finite-dimensional dynamical systems. This description is valid
generically, i.e., without making any symmetry assumption.

The billiard point of view has also unexpectedly led to the discovery of a
remarkable connection with one of the most beautiful and active subjects of
modern mathematics, namely hyperbolic Coxeter groups and the theory of indef-
inite Kac-Moody algebras. This connection emerges because the billiard region
in which the cosmological billiard ball moves turns out to possess exceptional
properties, which imply that the group of reflections in the billiard walls is a
simplex crystallographic hyperbolic Coxeter group for the known theories con-
taining gravity. This intriguing fact opens up the fascinating perspective that
an underlying infinite-dimensional symmetry algebra might play a central role
in the fundamental formulation of gravity. However, at the time of writing this
book, a complete proof of the presence of such algebras has not been found, so
that the origin of the observed emergence of the hyperbolic Coxeter groups in
the BKL description remains something of a mystery.

The purpose of this book is to explain at length the BKL analysis, starting
from the early work on the subject and going all the way to the most modern
developments.
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