

Fundamentals of Nuclear Medicine

EDITORS

Naomi P. Alazraki, M.D.

Chief, Nuclear Medicine Service VA Medical Center and Professor of Radiology University of Utah Medical School Salt Lake City, Utah

Fred S. Mishkin, M.D.

Director of Nuclear Medicine King/Drew Medical Center and Professor of Radiology Drew Postgraduate School of Medicine Los Angeles, California

THE SOCIETY OF NUCLEAR MEDICINE, INC. 475 Park Avenue South, New York, NY 10016

The Society of Nuclear Medicine, Inc. 475 Park Avenue South, New York, NY 10016

©1984 by The Society of Nuclear Medicine, Inc. All rights reserved. This book is protected by copyright. No part of it may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Made in the United States of America

Library of Congress Cataloging in Publication Data

Main entry under title:

Fundamentals of nuclear medicine.

Includes bibliographies and index.

1. Radioisotope scanning. 2. Nuclear medicine.

I. Alazraki, Naomi P. II. Mishkin, Fred S., 1937-

[DNLM: 1. Nuclear Medicine. WN 440 F981]

RC78.7.R4F83 1984 616.07 '575 84-6459

ISBN 0-932004-19-9 (pbk.)

Fundamentals of Nuclear Medicine

Preface

This basic guidebook for clinical nuclear medicine is written as an easily readable description of how nuclear medicine procedures should be used by clinicians in evaluating their patients. It is designed to assist medical students and physicians in becoming acquainted with the major useful nuclear medicine techniques for detecting and evaluating common disorders. The material provides an introduction to, not a textbook of, nuclear medicine; it has been written in a manner that will encourage a medical student or physician to read it in an evening or two.

Each chapter is devoted to a particular organ system or topic relevant to an understanding and appreciation of the risks and benefits involved in nuclear medicine studies. The basics of radiation and evaluation of radiation risk in the perspective of the levels of natural environmental radiation are presented to educate physicians. The awareness and sensitivities of the general public toward the topic of radiation demand that all clinicians who refer patients for studies using ionizing radiation have a basic understanding of radiation. Chapter 1 places the phenomenon of radiation in perspective.

The emphasis is on presenting the rationales for ordering the various clinical imaging procedures performed in most nuclear medicine departments. An Appendix summarizes the approximate sensitivities and specificities of various radionuclide studies for particular diseases or physiologic evaluations. The sensitivities and specificities listed represent the consensus of estimations submitted by a group of knowledgeable practicing nuclear medicine physicians. Selected Readings are listed at the end of each chapter for those interested in obtaining additional information.

A glossary of nomenclature and terms used in discussions of nuclear medicine and radiation is included. In addition to the clinical emphasis of this manual, a brief explanation of how the imaging equipment works is provided. Discussion of nonimaging studies, including the in vitro radioimmunoassay procedures, is included.

Although the chapters are primarily organized according to organ systems, some chapters deal with specific categories of problems or diseases; for example, Chapters 11–13 are devoted to evaluation of trauma, infectious or inflammatory lesions, and cancer. Where appropriate, alternative imaging modalities including ultrasound, computed tomography imaging, and radiographic special procedures are discussed. Comparative data between nuclear medicine imaging and other modalities are presented to help guide the practicing clinician in the selection of the most appropriate procedure for a given problem. Clinical experience with nuclear magnetic resonance as an imaging modality is not yet sufficiently established at the time of this writing to permit comparative data relative to radionuclide studies.

The editors wish to acknowledge and express thanks for valuable guidance and help from James A. Sorenson, Ph.D., Book Coordinator of the Society of Nuclear Medicine, from C. Douglas Maynard, M.D., Chairman of the Publications Committee, and from Peter Kirchner, M.D., who was Chairman of the Education and Training Committee during the development of this document. We are grateful to Ms. Laura Kosden, Ms. Karen Schools, and Ms. Laura Schraub of the Central Office of the Society of Nuclear Medicine for their valuable advice, help, and support for this publication.

The Editors

Contributors

Naomi P. Alazraki, M.D. Chief, Nuclear Medicine Service, VA Medical Center; Professor of Radiology, University of Utah Medical School, Salt Lake City, Utah

Manuel L. Brown, M.D.
Physician of Nuclear Medicine,
Mayo Clinic;
Associate Professor of Laboratory Medicine and Radiology,
Mayo Medical School,
Rochester, Minnesota

Frederick L. Datz, M.D.
Staff Nuclear Medicine
Physician,
The University of Utah
Medical Center;
Assistant Professor of
Radiology,
The University of Utah
Medical School,
Salt Lake City, Utah

Leon S. Malmud, M.D.
Professor of Nuclear Medicine,
Temple University;
Chairman, Department of
Diagnostic Imaging

Temple University Hospital Philadelphia, Pennsylvania

Frederick S. Mishkin, M.D.
Director of Nuclear Medicine,
King/Drew Medical Center;
Professor of Radiology,
Drew Postgraduate School of
Medicine,
Los Angeles, California

Isaac C. Reese, Ph.D.
Acting Chairman, Department of Radiology,
King/Drew Medical Center;
Professor of Radiology,
Drew Postgraduate School of
Medicine
Los Angeles, California

Barry A. Siegel, M.D.
Director, Division of Nuclear
Medicine,
Mallinckrodt Institute of
Radiology,
Professor of Radiology and
Medicine,
Washington University School
of Medicine,
St. Louis, Missouri

James A. Sorenson, Ph.D. Director of Medical Physics, Professor of Radiology, University of Utah Medical School, Salt Lake City, Utah

Leroy A. Sugarman, M.D.
Attending Physician, Nuclear
Medicine,
Montefiore Medical Center;
Associate Professor of Nuclear
Medicine and Radiology,
Albert Einstein College of
Medicine,
Bronx, New York

Andrew T. Taylor, Jr., M.D. Director of Nuclear Medicine, Professor of Radiology, University of Utah Medical School, Salt Lake City, Utah Attending Physician, Nuclear Medicine, Montefiore Medical Center; Associate Professor of Nuclear

Heidi S. Weissmann, M.D.

Medicine and Radiology,
Albert Einstein College of
Medicine,

Bronx, New York

Henry N. Wellman, M.D.
Director of Nuclear Medicine
Division,
Indiana University Hospital;
Professor of Medicine and
Radiology,
Indiana University Medical
Center,
Indianapolis, Indiana

Contents

RADIATION IN PERSPECTIVE

- Basic Science of Nuclear Medicine 3
 Radiation and Dose 3
 Radiation Effects 6
 Imaging of Radiation 10
 Selected Readings 15
- The Diagnostic Process and Nuclear Medicine 16
 Sensitivity, Specificity, and Prior Probability 16
 Selected Readings 18

ORGAN IMAGING WITH RADIONUCLIDES

- Thyroid Uptake and Imaging 21
 Radioactive Iodine Uptake 21
 Thyroid Imaging 23
 Radioiodine Therapy 28
 Carcinoma 28
 Selected Readings 29
- 4. Cardiovascular System 31
 Cardiac Blood-Pool Imaging and Evaluation of
 Ventricular Function 31
 Radionuclide Angiocardiography 35
 Evaluation of Myocardial Perfusion 37
 Myocardial Infarct Imaging 40
 Selected Readings 41
- 5. Pulmonary System and Thromboembolism 43 Diagnosis of Pulmonary Embolism 43 Principles of Pulmonary Perfusion/Ventilation Imaging 44 Ventilation Imaging 45

Sensitivity of Pulmonary Perfusion Imaging in Detecting Pulmonary Embolism 45 Specificity of Radionuclide Pulmonary Perfusion Imaging 46 Nonembolic Pulmonary Disease 49 Thrombus Detection 50 Selected Readings 53

6. Liver and Gastrointestinal Tract 55

Liver-Spleen Imaging 55
Esophagus, Stomach, and Duodenum 59
Acute Gastrointestinal Hemorrhage 62
Selected Readings 64

7. Biliary Tract 66

Cholecystitis 66
Biliary Leakage 69
Cholestasis 69
Postoperative Evaluation 70
Trauma 70
Selected Readings 71

8. Genitourinary Tract 73

Evaluation of Renal Function 74
Hydronephrosis or Possible Obstruction 75
Ureteral Reflux 79
Renal Columns of Bertin 79
Renovascular Hypertension 79
Renal Transplantation 80
Scrotal Imaging (Torsion vs. Epididymitis) 80
Selected Readings 81

9. Skeletal System 82

Principles of Radionuclide Bone Imaging 82
Neoplasms 83
Trauma 85
Vascular Disease 86
Infection 87
Metabolic Disease 88
Joint Disease 89

Soft Tissue Lesions 89 Selected Readings 91

10. Central Nervous System 92

Radiopharmaceuticals 92
Radionuclide Cerebral Angiography 94
Delayed Brain Scan Images 96
Cerebrospinal Fluid Dynamics 98
Selected Readings 101

IMAGING DISEASE PROCESSES

11. Trauma 105

Brain 105 Liver 106 Spleen 106 Kidney 107 Vascular 108 Bone 108 Lung 110

Selected Readings 111

12. Inflammatory and Infectious Processes 113

Multiorgan Imaging 113
Gallium-67 Imaging 115
Indium-111-Labeled Leukocytes 117
Selected Readings 119

13. Cancer 121

Radionuclide Liver Imaging 121 Evaluation of the Chest 123 Radioimmunodetection and Radioimmunotherapy 125 Specific Tumor Types 126 Selected Readings 129

NONIMAGING DIAGNOSTIC TECHNIQUES

14. Nonimaging Procedures 135

Radioligand Assays 135 Schilling Test 138 Measuring Body Spaces 140
Other Nonimaging Quantitative Tests 143
Selected Readings 144

Appendix 147

Glossary 155

Index 177

Radiation in Perspective

1

Basic Science of Nuclear Medicine

RADIATION AND DOSE

Energy emitted by atoms undergoing internal change, transferred through space or matter, is called radiation. Medical diagnostic imaging chiefly has used ionizing radiation in the form of x-rays and γ -rays. β -particles and α -particles, also forms of ionizing radiation, may contribute to radiation dose in medical procedures, but are not useful for imaging, mainly because they travel distances of only a few millimeters in tissue. In addition to ionizing radiation, nonionizing radiation in the lower-energy portion of the electromagnetic spectrum, radiofrequency (RF), is used in the process of nuclear magnetic resonance (NMR) to induce changes in the nuclei of atoms that have been placed in a stable, uniformly graded magnetic field. Images are formed from the recorded tissue responses to the RF signal in the magnetic field. Medical imaging also employs ultrasound (coherent, high-frequency sound wave radiation) to form images by reflection from tissue interfaces of different acoustic impedances. This chapter deals with ionizing radiation and its effects on human beings.

Tissue exposed to radiation is said to be irradiated. The amount of radiation energy absorbed by tissue is called radiation dose and is specified in rads or millirads (1/1000 rad).* A dose

^{*}Throughout this book we use traditional radiation units: rads, rems, roentgens, and curies. Recently, several national and international bodies have recommended a transition to S.I. (Système Internationale) units. Students and practioners are encouraged to become familiar with S.I. units (see Appendix) and

of 1 rad implies 100 ergs of energy absorbed per gram of tissue. A closely related quantity, called dose equivalent, relates the dose to biologic risk and is specified in rems. For practical purposes, a dose of 1 rad from x-rays or radiation associated with nuclear medical procedures delivers a dose equivalent of 1 rem. Some types of radiation associated with nuclear weapons (e.g., α -particles and neutrons) have greater potential for biologic damage and deliver dose equivalents of 10-20 rem/rad of dose. Finally, the quantity exposure refers to the amount of ionization produced by a beam of x-rays or γ-rays in air and is used to specify radiation levels in the environment. The basic unit is the roentgen (R). Exposure levels are measured with radiation detection devices such as ionization chambers and Geiger counters. For x-rays and γ-rays, when the measured exposure level is 1 R, the dose that would be delivered to a mass of tissue located at that same point would be approximately 1 rad. Hence, for radiation used for medical diagnostic purposes, roentgens, rads, and rems turn out to be numerically equivalent, although they actually represent different quantities.

The major difference between electromagnetic radiation, such as x-rays and γ -rays, and particle-type radiation, such as β -particles and α -particles, lies in their ability to penetrate matter. Whereas β -particles travel only a few millimeters in soft tissue before expending all their energy, x-rays and γ -rays distribute their energy more diffusely and can traverse many centimeters of tissue. Hence, β particles deliver highly localized radiation doses, whereas x-rays and γ -rays deliver doses more uniformly and in a less concentrated way throughout the irradiated tissues. The dose concentration of β -particles is used to advantage, for example, in the treatment of hyperthyroidism with radioiodine, because the selective uptake of iodine by the thyroid gland results in highly selective irradiation of that organ. In contrast, for external-beam therapy, x-rays or γ-rays from linear accelerators or cobalt-60 machines are used to treat larger volumes of tissue to a more uniform dose level. For a given dose level and dose distribution, however, x-, γ -, and β radiation have similar biologic and therapeutic effects.

to incorporate them into routine usage. However, in the interest of familiarity, we will continue to use traditional units in this book.

Although significant gaps in knowledge persist, we have learned a great deal about the deleterious effects associated with tissue radiation. We know that a sharp and decisive distinction must be made between the effects produced by massive amounts of radiation, for example, from nuclear bombs or radiation for cancer therapy, and those produced by the low levels of medical radiation for diagnosis, which differ in dose levels by factors of thousands or more. An understanding of natural environmental radiation, which also constitutes a source of low-level radiation exposure, is useful in placing medical radiation in proper perspective.

Background Radiation

Radiation from cosmic rays and from naturally occurring radioactive atoms results in variable background irradiation, depending on where we live. Major differences exist between sea level and high altitudes and between regions of different soil and rock compositions. In Florida, for example, the average annual background radiation approximates 80–100 mrem/year, whereas in some high regions of India, exposures measure up to 1300 mrem/year. Background radiation in the Denver–Boulder, Colorado area is twice that at sea level. If one lives in a brick building, the naturally occurring radioactivity in the material used to make the brick increases background irradiation above that of a wood building. There is no firm evidence to indicate harmful effects of these increased background levels of radiation, however.

The human body contains natural radioactivity as well. Approximately 0.01% of our body potassium is radioactive potassium-40 (about 0.1 μ Ci).* Our bodies also contain \sim 0.1 μ Ci carbon-14. Currently, laboratory animals containing this amount of injected radioactivity are considered radioactive, yet no one considers the normal human body radioactive.

The chief source of increased radiation to human beings over background levels is medical diagnostic radiation. Although such levels are not delivered uniformly to the entire population, calcula-

^{*}The microcurie (μ Ci) is a unit of radioactive quantity. See Appendix.