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Preface

In February of 2007, I converted my “What’s new” web page of research
updates into a blog at terrytao.wordpress.com. This blog has since grown
and evolved to cover a wide variety of mathematical topics, ranging from my
own research updates, to lectures and guest posts by other mathematicians,
to open problems, to class lecture notes, to expository articles at both basic
and advanced levels.

With the encouragement of my blog readers, and also of the AMS, I
published many of the mathematical articles from the first year (2007) of
the blog as [Ta2008b]|, which will henceforth be referred to as Structure
and Randomness throughout this book. This gave me the opportunity to
improve and update these articles to a publishable (and citeable) standard,
and also to record some of the substantive feedback I had received on these
articles by the readers of the blog. Given the success of the blog experiment
so far, I am now doing the same for the second year (2008) of articles from
the blog. This year, the amount of material is large enough that the blog
will be published in two volumes.

As with Structure and Randomness, each part begins with a collection of
expository articles, ranging in level from completely elementary logic puzzles
to remarks on recent research, which are only loosely related to each other
and to the rest of the book. However, in contrast to the previous book, the
bulk of these volumes is dominated by the lecture notes for two graduate
courses I gave during the year. The two courses stemmed from two very
different but fundamental contributions to mathematics by Henri Poincaré,
which explains the title of the book.

This is the second of the two volumes, and it focuses on geometry, topol-
ogy, and partial differential equations. In particular, Chapter 2 contains

Vil



viii Preface

the lecture notes for my course on the famous Poincaré conjecture that
every simply connected compact three-dimensional manifold is homeomor-
phic to a sphere, and its recent spectacular solution [Pe2002], [Pe2003],
[Pe2003b] by Perelman. This conjecture is purely topological in nature,
and yet Perelman’s proof uses remarkably little topology, instead working
almost entirely in the realm of Riemannian geometry and partial differential
equations, and specifically in a detailed analysis of solutions to Ricci flows on
three-dimensional manifolds, and the singularities formed by these flows. As
such, the course will incorporate, along the way, a review of many of the ba-
sic concepts and results from Riemannian geometry (and to a lesser extent,
from parabolic PDE), while being focused primarily on the single objective
of proving the Poincaré conjecture. Due to the complexity and technical
intricacy of the argument, we will not be providing a fully complete proof of
this conjecture here (see [MoTi2007] for a careful and detailed treatment);
but we will be able to cover the high-level features of the argument, as well
as many of the specific components of that argument, in full detail, and the
remaining components are sketched and motivated, with references to more
complete arguments given. In principle, the course material is sufficiently
self-contained that prior exposure to Riemannian geometry, PDE, or topol-
ogy at the graduate level is not strictly necessary, but in practice, one would
probably need some comfort with at least one of these three areas in order
to not be totally overwhelmed by the material. (I ran this course as a topics
course; in particular, I did not assign homework.)

A remark on notation

For reasons of space, we will not be able to define every single mathematical
term that we use in this book. If a term is italicised for reasons other
than emphasis or definition, then it denotes a standard mathematical object,
result, or concept, which can be easily looked up in any number of references.
(In the blog version of the book, many of these terms were linked to their
Wikipedia pages, or other on-line reference pages.)

I will however mention a few notational conventions that I will use
throughout. The cardinality of a finite set E will be denoted |E|. We
will use the asymptotic notation X = O(Y), X < Y, or Y > X to denote
the estimate |X| < CY for some absolute constant C' > 0. In some cases
we will need this constant C' to depend on a parameter (e.g. d), in which
case we shall indicate this dependence by subscripts, e.g. X = O4(Y) or
X <4Y. We also sometimes use X ~ Y as a synonym for X < Y < X.

In many situations there will be a large parameter n that goes off to
infinity. When that occurs, we also use the notation 0,_.0(X) or simply
o(X) to denote any quantity bounded in magnitude by ¢(n)X, where ¢(n)
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is a function depending only on n that goes to zero as n goes to infinity. If
we need ¢(n) to depend on another parameter, e.g. d, we indicate this by
further subscripts, €.g. 0p—00:d(X).

We will occasionally use the averaging notation

1
Brexf(2) = 157 2 f(@)
zeX
to denote the average value of a function f: X — C on a non-empty finite
set X.
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Chapter 1

Expository Articles

1.1. Dvir’s proof of the finite field Kakeya conjecture

One of my favourite unsolved problems in mathematics is the Kakeya con-
jecture in geometric measure theory. This conjecture is descended from the
following question, posed by Soichi Kakeya in 1917:

Problem 1.1.1 (Kakeya needle problem). What is the least area in the
plane required to continuously rotate a needle of unit length and zero thick-
ness around completely (i.e., by 360°)?

For instance, one can rotate a unit needle inside a unit disk, which has
area m/4. By using a deltoid one requires only 7 /8 area.

In [Bel1919], [Be1928|, Besicovitch showed that in fact one could ro-
tate a unit needle using an arbitrarily small amount of positive area. This
unintuitive fact was a corollary of two observations. The first, which is easy,
is that one can translate a needle using arbitrarily small area, by sliding
the needle along the direction it points in for a long distance (which costs
zero area), turning it slightly (costing a small amount of area), sliding back,
and then undoing the turn. The second fact, which is less obvious, can be
phrased as follows. Define a Kakeya set in R? to be any set which contains
a unit line segment in each direction.

Theorem 1.1.2 ([Bel919]). There exist Kakeya sets in R? of arbitrarily
small area (or more precisely, Lebesque measure).

In fact, one can construct such sets with zero Lebesgue measure. On
the other hand, it was shown by Davies [Dal971] that even though these
sets had zero area, they were still necessarily two-dimensional (in the sense

1



2 1. Expository Articles

of either Hausdorff or Minkowski dimension). This led to an analogous
conjecture in higher dimensions:

Conjecture 1.1.3 (Kakeya conjecture). A Besicovitch set in R™ (i.e.,
a subset of R™ that contains a unit line segment in every direction) has
Minkowski and Hausdorff dimension equal to n.

This conjecture remains open in dimensions three and higher (and gets
more difficult as the dimension increases), although many partial results
are known. For instance, if n = 3, it is known that Besicovitch sets have
Hausdorff dimension at least 5/2 (see [Wo01995|) and upper Minkowski di-
mension at least 5/2 + 10719 (see [KaLaTa2000]). See also the surveys
[Ta2001], [KaTa2002], [Wo01999).

In [Wo1999], Wolff proposed a simpler finite field analogue! of the
Kakeya conjecture as a model problem that avoided all the technical is-
sues involving Minkowski and Hausdorff dimension. If F™ is a vector space
over a finite field F, define a Kakeya set to be a subset of F™ which contains
a line in every direction.

Conjecture 1.1.4 (Finite field Kakeya conjecture). Let E C F™ be a
Kakeya set. Then E has cardinality at least ¢,|F|", where ¢, > 0 depends
only on n.

This conjecture has had a significant influence in the subject, in partic-
ular inspiring work on the sum-product phenomenon in finite fields, which
has since proven to have many applications in number theory and computer
science. Modulo minor technicalities, the progress on the finite field Kakeya
conjecture was, until very recently, essentially the same as that of the origi-
nal “Euclidean” Kakeya conjecture.

Recently, the finite field Kakeya conjecture was proven using a beauti-
fully simple argument by Dvir [Dv2008], based on the polynomial method
in algebraic extremal combinatorics. The proof is so short that I can present
it in full here.

The polynomial method is used to control the size of various sets E by
looking at one or more polynomials P which vanish on that set E. This
philosophy of course closely resembles that of algebraic geometry, and in-
deed one could classify the polynomial method as a kind of “combinatorial
algebraic geometry”. An important difference, though, is that in the com-
binatorial setting we work over fields that are definitely not algebraically

1Cf. Section 1.6 of Structure and Randomness.



1.1. Dvir’s proof of the finite field Kakeya conjecture 3

closed; in particular, we are primarily interested in polynomials? and their
zero sets over finite fields.

For instance, in high school we learn the following connection between
one-dimensional sets F and polynomials P(x) in one variable:

Theorem 1.1.5 (Factor theorem). Let F' be a field, and d > 1 an integer.
Let F[z| denote the polynomials in one variable with coefficients in F.

(1) If P € F[z] is a non-zero polynomial of degree at most d, then the
set {x € F : P(x) = 0} has cardinality at most d.

(2) Conwversely, given any set E C F of cardinality at most d, there
exists a non-zero polynomial P € Flx] of degree at most d that
vanishes on E.

Thus, to obtain an upper bound on the size of a one-dimensional set F,
it would suffice to exhibit a non-zero low-degree polynomial that vanishes
on F; conversely, to obtain a lower bound on the size of F, one would have
to show that the only low-degree polynomial that vanishes on E is the zero
polynomial. It is the latter type of observation which is of relevance to the
finite field Kakeya problem.

There are analogues of both (1) and (2) in higher dimensions. For in-
stance, the Schwartz-Zippel lemma [Sc1980] is a higher-dimensional ana-
logue of (1), as is the combinatorial Nullstellensatz of Alon [A11999] and
Bézout’s theorem from algebraic geometry, while Stepanov’s method
[St1969] exploits a higher-dimensional analogue of (2). These sorts of tech-
niques and results are collectively referred to as the polynomial method in
extremal algebraic combinatorics. For Dvir's argument, we will need a very
simple higher-dimensional version of (2) that comes from basic linear alge-
bra, namely

Lemma 1.1.6. Let E C F™ be a set of cardinality less than (":d) for some
d > 0. Then there exists a non-zero polynomial P € Flzi,...,2,] in n
variables of degree at most d which vanishes on E.

Proof. Let V be the vector space of polynomials in F|xy,...,z,] of degree
at most d. Elementary combinatorics reveals that V' has dimension (":d).
On the other hand, the vector space F'¥ of F-valued functions on E has

dimension |E| < ("j;d). Hence the evaluation map P +— (P(x))zecg from V
to F'F is non-injective, and the claim follows. U

Dvir’s argument combines this lemma with the following proposition.

2Also, whereas algebraic geometry is more concerned with specific (and often highly struc-
tured) polynomials, the polynomial method requires that one consider rather generic (and usually
quite high degree) polynomials.



4 1. Expository Articles

Proposition 1.1.7. Let P € F[xzy,...,zy] be a polynomial of degree at most
|F| — 1 which vanishes on a Kakeya set E. Then P is identically zero.

Proof. Suppose for contradiction that P is non-zero. We can write P =
Z;izo P;, where 0 < d < |F| —1 is the degree of P and P; is the i*" homoge-
neous component, thus Py is non-zero. Since P vanishes on E, d cannot be
ZETO.

Let v € F™\{0} be an arbitrary direction. As F is a Kakeya set, E
contains a line {z+tv : t € F} for some z = x,, € F", thus P(z+tv) = 0 for
all t € F. The left-hand side is a polynomial in ¢ of degree at most |F| — 1,
and thus vanishes identically by the factor theorem. In particular, the #¢
coefficient of this polynomial, which is P;(v), vanishes for any non-zero v.
Since P, is homogeneous of degree d > 0, P; vanishes on all of F™. Since
P; also has degree less than |F|, repeated application of the factor theorem
for each variable in turn (or the Schwartz-Zippel lemma [Sc1980], which is
much the same thing) shows that P; = 0, a contradiction. a

Remark 1.1.8. The point here is that a low-degree polynomial which van-
ishes on a line must also vanish at the point at infinity where the line touches
the hyperplane at infinity. Thus a polynomial which vanishes on a Kakeya
set vanishes on the entire hyperplane at infinity. One can then divide out the
defining polynomial for that hyperplane and repeat the process to conclude
that the polynomial vanishes identically.

Combining the lemma and the proposition we obtain
Corollary 1.1.9. Every Kakeya set in F™ has cardinality at least (lF 1";1"_1).

Since (|FH;I”_1) = L|F|" + On(|F|""1), this establishes the finite field
Kakeya conjecture.

This bound seems to be quite tight. For instance, it gives the lower
bound of Jﬂﬂ%""—l) for Kakeya sets in F? (which was already implicitly ob-
served by Wolff); this is very close to the exact bound, which was recently
established in [Ba2008|, [BIMa2008] to be 1F|([§I+1) + |Fl2_1 |F'| in the case
when |F| is odd. (Thanks to Simeon Ball and Francesco Mazzocca for these
references.)

It now seems sensible to revisit other problems in extremal combinatorics
over finite fields to see if the polynomial method can yield results there. Cer-
tainly close relatives of the Kakeya conjecture (e.g. the Nikodym set conjec-
ture, or the Kakeya maximal function conjecture) should now be establish-
able by these methods. On the other hand, there are other problems (such
as the sum-product problem, Szemerédi-Trotter type theorems, and distance
set problems) which are sensitive to the choice of field F' (and in particular,
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whether that field contains a subfield of index 2); see [BoKaTa2004]. It
would be interesting to see if there are ways to adapt the polynomial method
in order to detect the existence of subfields.

Very recently, the polynomial method has also been extended to yield
some progress on the Euclidean case; see Section 1.7.

Notes. This article first appeared at
terrytao.wordpress.com/2008/03/24.

Thanks to ninguem for corrections.

Seva posed the question of determining the asymptotic best density for
a Kakeya set in, say, F3', as n — oc.

Some pictures of Kakeya sets can be found at
www.math.ucla.edu/ tao/java/Besicovitch.html

or en.wikipedia.org/wiki/Kakeya_set.

Further discussion of Dvir’s result can be found online at
ilaba.wordpress.com/2008/03/23
and quomodocumque .wordpress.com/2008/03/25.

1.2. The Black-Scholes equation

In this article I would like to describe the mathematical derivation of the
famous Black-Scholes equation in financial mathematics, at least in the sim-
plified case in which time is discrete. This simplified model avoids many of
the technicalities involving stochastic calculus, Ito’s formula, etc., and brings
the beautifully simple basic idea behind the derivation of this formula into
focus.

The basic type of problem that the Black-Scholes equation solves (in par-
ticular models) is the following. One has an underlying financial instrument
S, which represents some asset? which can be bought and sold at various
times ¢, with the per-unit price S; of the instrument varying with ¢. Given
such an underlying instrument S, one can create options based on S and on
some future time ¢, which give the buyer and seller of the options certain
rights and obligations regarding S at an expiration time t;. For instance,

(1) A call option for S at time t; and at a strike price P gives the
buyer of the option the right (but not the obligation) to buy a unit
of S from the seller of the option at price P at time ¢; (conversely,
the seller of the option has the obligation but not the right to sell

3For the mathematical model, it is not relevant what type of asset S actually is, but one
could imagine for instance that S is a stock, a commodity, a currency, or a bond.
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a unit of S to the buyer of the option at time t;, if the buyer so
requests).

(2) A put option for S at time ¢; and at a strike price P gives the buyer
of the option the right (but not the obligation) to sell a unit of S
to the seller of the option at price P at time ¢; (and conversely, the
seller of the option has the obligation but not the right to buy a
unit of S from the buyer of the option at time ¢, if the buyer so
requests).

(3) More complicated options, such as straddles and collars, can be
formed by taking linear combinations of call and put options, e.g.
simultaneously buying or selling a call and a put option. One can
also consider “American options” which offer rights and obliga-
tions for an interval of time, rather than the “European options”
described above which only apply at a fixed time ¢;. The Black-
Scholes formula applies only to European options, though exten-
sions of this theory have been applied to American options.

The problem is this: what is the “correct” price, at time ty, to assign
to a Buropean option (such as a put or call option) at a future expiration
time £;7 Of course, due to the volatility of the underlying instrument S, the
future price Sy, of this instrument is not known at time ¢;. Nevertheless—
and this is really quite a remarkable fact—it is still possible to compute
deterministically, at time g, the price of an option that depends on that
unknown price S, under certain assumptions (one of which is that one
knows exactly how volatile the underlying instrument is).

1.2.1. How to compute price. Before we do any mathematics, we must
first settle a fundamental financial question—how can one compute the price
of some asset A? In most economic situations, such a price would depend
on many factors, such as the supply and demand of A, transaction costs
in buying or selling A, legal regulations concerning A, or more intangible
factors such as the current market sentiment regarding A. Any model that
attempted to accurately describe all of these features would be hideously
complicated and involve a large number of parameters that would be nearly
impossible to measure directly. So, in general, one cannot hope to compute
such prices mathematically.

But the situation is much simpler for purely financial products, such as
options, at least when one has a highly deep and liquid market for the under-
lying instrument S. More precisely, we will make the following (unrealistic)
assumptions.



