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Preface

Our intention in writing this book is to give an elementary introduction to
number theory which does not demand a great deal of mathematical back-
ground or maturity from the reader, and which can be read and understood
with no extra assistance. Our first three chapters are based almost entirely
on A-level mathematics, while the next five require little else beyond some el-
ementary group theory. It is only in the last three chapters, where we treat
more advanced topics, including recent developments, that we require greater
mathematical background; here we use some basic ideas which students would
expect to meet in the first year or so of a typical undergraduate course in math-
ematics. Throughout the book, we have attempted to explain our arguments
as fully and as clearly as possible, with plenty of worked examples and with
outline solutions for all the exercises.

There are several good reasons for choosing number theory as a subject. It
has a long and interesting history, ranging from the earliest recorded times to
the present day (see Chapter 11, for instance, on Fermat’s Last Theorem), and
its problems have attracted many of the greatest mathematicians; consequently
the study of number theory is an excellent introduction to the development and
achievements of mathematics (and, indeed, some of its failures). In particular,
the explicit nature of many of its problems, concerning basic properties of inte-
gers, makes number theory a particularly suitable subject in which to present
modern mathematics in elementary terms.

A second reason is that many students nowadays are unfamiliar with the
notion of formal proof; this is best taught in a concrete setting, rather than as
an abstract exercise in logic, but earlier choices of context, such as geometry
and analysis, have suffered from the conceptual difficulty and abstract nature of
their subject-matter, whereas number theory is about very familiar and easily
manipulated objects, namely integers. We therefore see this book as a vehicle for
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explaining how mathematicians go about their business, finding experimental
evidence, making conjectures, creating proofs and counterexamples, and so on.

A third reason is that many students prefer computation to abstraction,
and number theory, with its discrete, precise nature, is an ideal topic in which
to perform numerical experiments and calculations. Many of these can be done
by hand, and throughout the book we have given examples and exercises of
an algorithmic nature. Nowadays, almost every student has access to comput-
ing facilities far in excess of anything the great calculator Gauss could have
imagined, and for a few of our exercises such electronic assistance is desirable
or even essential. We have not linked our approach to any particular machine,
programming language or computer algebra system, since even a fairly primi-
tive pocket calculator or personal computer can greatly enhance one’s ability
to do number theory (and part of the fun lies in persuading it to do so).

A final reason for learning number theory is that, despite Hardy’s (1940)
famous but now out-dated claim, it is useful. Its best-known modern applica-
tion is to the cryptographic systems which allow banks, commercial companies,
military establishments, and so on to exchange information in securely-encoded
form; many of these systems are based on such number-theoretic properties as
the apparent difficulty of factorising very large integers (see Chapters 2 and
5). Physicists, engineers and computer scientists are also finding that number-
theoretic concepts are playing an increasing role in their work. These applica-
tions were not the original motivation for the great developments in number
theory, but their emergence can only add to the importance of the subject.

* The first three chapters of this book are intended to be accessible to anyone
with a little A-level mathematics. In particular, they are suitable for first-year
university students and for the more advanced sixth-formers. Equivalence re-

. lations appear in Chapter 3, but otherwise no abstract mathematics is used.
Proof by induction is used several times, and three versions of this (including
strong induction and the well-ordering principle) are summarised in Appendix
A. Chapters 4-8 are a little more algebraic in flavour, and require slightly
greater mathematical maturity. Here, it is helpful if the reader has met some
elementary group theory (subgroups, cyclic groups, direct products, isomor-
phisms), and knows what rings and fields are; these topics are summarised
in Appendix B. Probabilities are also mentioned, though not in any essential
way. These chapters are therefore suitable for second- or third-year students,
and also for those first-year students sufficiently interested to want to read fur-
ther. The last three chapters are more advanced, relying on ideas from other
areas of mathematics such as analysis, calculus, geometry and algebra which
students will almost certainly have met early in their undergraduate studies;
these include convergence (summarised in Appendix C), power series, complex
numbers and vector spaces. These chapters should therefore be suitable for
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students at second- or third-year level. The final chapter, which traces Fer-
mat’s Last Theorem from its ancient roots to its recent proof, is rather more
descriptive and historical in style than the others, but we have tried to include
sufficient technical detail to give the reader a flavour of this exciting topic.

The early parts of the book could be used as a first-year introduction to
the concepts and methods of pure mathematics, while the rest could form the
basis for a more specialised second- or third-year course in number theory.
Indeed, many of the chapters are based on courses we have taught to first- and
third-year mathematics students at the University of Southampton. The book
is also suitable for other students, such as computer scientists and physicists,
who want an elementary introduction which brings them up to date with recent
developments in the subject.

The two essentials for starting number theory are confidence with tradi-
tional algebraic manipulation, and some conception of formal proof. Unfortu-
nately, the recent expansion of university education in the UK has coincided
with a decline in numbers taking Further Mathematics A-level, so mathemat-
ics students now arrive at university much less familiar with these topics than
their predecessors were. In our first few chapters we have therefore taken a more
leisurely approach than is traditional, using simple results in number theory
to illustrate methods of proof, and emphasising algorithmic and computational
aspects in parallel with theory. In later chapters, the pace is rather brisker,
but even here we have attempted to present our arguments in as simple terms
as possible in order to make them more widely accessible. In the case of some
advanced results, this has forced us to concentrate on special cases, or to give
only outline proofs, but we think this is a worthwhile sacrifice if it conveys to
our readers some feeling of what high-level mathematics is like and how it is
done — too many mathematics students graduate with only the vaguest idea of
the great problems and achievements of their subject.

We would like to thank Peter Neumann for showing us how to discover
and communicate mathematics, and many of our colleagues at Southampton,
especially Ann and Keith Hirst and David Singerman, for their sound advice on
teaching mathematics in general and number theory in particular. We are very
grateful to Susan Hezlet and her colleagues at Springer for their advice and
encouragement. It is also traditional to thank one’s partner for patience and
tolerance during the preparation of a book; instead, we shall simply thank our
children for not playing their music any louder than was absolutely necessary.



Notes to the Reader

Mathematics is a difficult subject to read, and number theory is no exception,
even if its subject matter is less abstract than some other topics. Do not be
surprised, therefore, if it takes you several attempts before you completely
understand an argument. It is often useful when reading mathematics to make
notes and to do calculations as you go along; for instance, a general argument
can often be clarified by seeing how it works in some specific cases. '

Exercises are an important part of the learning process, and you are en-
couraged to attempt them while reading each section; we have generally placed
them immediately after the topics on which they are based, to reinforce your
understanding of those topics. Supplementary exercises, which are generally
more demanding, are placed at the end of a chapter; they can refer to anything
in that chapter, and possibly also to topics covered in earlier chapters. Answers
or outline solutions for all the exercises are given at the end of the book; how-

xiii
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ever, there is a great deal more to be gained from trying the exercises first,
before reading the solutions!

The diagram on page xiii shows the interdependence of chapters, with con-
tinuous and broken lines indicating strong and weak links. Thus, to understand
Chapter 11 it is sufficient to have read Chapters 1-4, though it also helps to
know a little of the material in Chapter 9. The letters i and w indicate that
the principles of induction and well-ordering are used; these are summarised in
Appendix A. Similarly g and r refer to material on groups and rings (Appendix
B), and ¢ to convergence (Appendix C).
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1

Divisibility

We start with a number of fairly elementary results and techniques, mainly
about greatest common divisors. You have probably met some of this material
already, though it may not have been treated as formally as here. There are
several good reasons for giving very precise definitions and proofs, even when
there is general agreement about the validity of the mathematics involved. The
first is that ‘general agreement’ is not the same as convincing proof: it is not
unknown for majority opinion to be seriously mistaken about some point. A
second reason is that, if we know exactly what assumptions are required in
order to deduce certain conclusions, then we may be able to deduce similar
conclusions in other areas where the same assumptions hold true. For example,
this chapter is entirely devoted to the divisibility properties of integers, but
it turns out that very similar definitions, methods and theorems are valid for
certain other objects which can be added, subtracted and multiplied; some
of these objects, such as polynomials, are very familiar, while others, such as
Gaussian integers and quaternions, will be introduced in later chapters. These
generalisations of the integers are also explored in algebra, under the heading
of ring theory.



2 Elementary Number Theory

1.1 Divisors

Our starting-point is the division algorithm, which is as follows:

Theorem 1.1

If a and b are integers with b > 0, then there is a unique pair of integers ¢ and
r such that

a=gb+r and 0<r<b.

Example 1.1

Ifa=9 and b =4 then we have 9 =2 x4+ 1 with 0 <1 <4, so ¢ = 2 and
r=1;ifa=—-9and b=4 then ¢g=—3 and r = 3.

In Theorem 1.1, we call ¢ the quotient and r the remainder. By dividing by

b, so that

%:q—l» and DS%<1,

we see that g is the integer part |a/b| of a/b, the greatest integer i < a/b. This
makes it easy to calculate ¢, and then to find r = a — gb.

o3

Proof

First we prove existence. Let
S={a—nb|neZ}={a,atbat2b...}.

This set of integers contains non-negative elements (take n = —|a|), so SN N
is a non-empty subset of N; by the well-ordering principle (see Appendix A},
S NN has a least element, which has the form r = a — gb > 0 for some integer
q. Thus a = gb+r with r > 0. If » > b then S contains a non-negative element
a— (g+ 1)b=r — b < r; this contradicts the minimality of r, so we must have
7. <50

To prove uniqueness, suppose that a = gb+7 = ¢'b+ 7’ with 0 < r < b and
0<r <bsor—r'=(¢ —qb.Ifq #qthen|g—q| >1,s0 |r—7r'| > |b| =b,
which is impossible since 7 and r’ lie between 0 and b— 1 inclusive. Hence ¢’ = ¢
and so ' =r. O

We can now deal with the case b < 0: since —b > 0, Theorem 1.1 implies
that there exist integers ¢* and r such that a = ¢*(—b)+rand 0 < r < —b, so



