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Preface

This book was initially based on a short course of twenty lectures, given
to second year students at University College Dublin during the autumn
of 1992. Later, two chapters on integration theory were added to improve
the balance between differential and integral calculus. The students had
completed a one year course on differential and integral calculus for real
valued functions of one real variable—this is the prerequisite for reading
this book—and this course was designed as an introduction to the calculus
of several variables.

My initial motivation for writing this book was to provide my own stu-
dents with a friendly set of notes that they could read in their entirety.
As the book took shape, I realized that I was addressing the subject in a
manner somewhat different to the standard texts on several variable cal-
culus. It is difficult to explain precisely why this occurred. Nevertheless,
an attempted explanation may also help you, the reader, in your approach
and I will try to give a partial one.

Research mathematicians typically spend their working lives doing re-
search, learning new mathematics and teaching. They teach themselves
new mathematics mainly to further their own research. Yet, often their
own way of learning mathematics is the complete opposite to the way
they present mathematics to their students. On approaching a new area
of mathematics the research mathematician is usually looking for some re-
sult (or technique). He or she will generally not know precisely what is
being sought and lives in hope that by searching, often backwards and
forwards through a text, the required result will somehow be recognized.
The search through the literature will neither be random nor logical but
will be based on accumulated experience and intuition. Once the objective
has been identified the research mathematician works backwards to sat-
isfy professional standards for a precise meaning of the terms involved and
the context in which the result may be applied. Finally, and this depends
on many things, the research mathematician may even decide to satisfy a
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need for certainty and will then work through the background proofs. Thus
the mathematician, when doing research, behaves like a detective and in
fact there is no alternative since the plot is not revealed until the story is
almost over. Nevertheless, with students we first reveal the climax (theo-
rem), then the evidence (proof) and finally the intuition (explanation and
examples). This robs the subject of its excitement and does not use the
students’ own intuition and experience. I have tried to approach the mate-
rial of these lectures as a research mathematician approaches research: full
of doubt, more intuitively than logically, somewhat imprecise about where
we may be going, but with a general objective in mind, moving backwards
and forwards, trying simple cases, using various tricks that have previously
proved useful, experimenting and eventually arriving at something of in-
terest. Having obtained useful results intuitively I have returned to justify
them mathematically. At this stage the reasoning behind the proofs is of-
ten more acceptable and the proofs themselves become an integral part of
a unified process by adding to our understanding of the applications, by
showing the usefulness of earlier theoretical results and by suggesting fur-
ther developments. Of course, I have not fully succeeded in this attempt,
but feel nevertheless that I have gone some way in this direction. I be-
lieve that this is almost the only way to learn mathematics and that most
students are trying to follow this approach.

Although the calculus of several variables is often presented as a fully
mature subject in its own right, it is clear that most of the concepts are
the natural evolution of attempting to imitate the one dimensional theory
and I have tried to follow this approach in my presentation. The restriction
to functions of two variables simplifies the notation and at the same time
introduces most of the main concepts that arise in higher dimensions. I
believe that a clear understanding of the two variables case is a suitable
introduction to the higher dimensional situation. I have tried to be both
rigorous and self-contained and so have clearly marked out assumptions
made and discussed the significance of results used without proof.

We discuss all possible functions which involve two variables and so look
at functions from R?> —+ R, R = R? and R? - R2. This provides a basic
introduction to three subjects, i.e. calculus of several variables, differential
geometry and complex analysis.

In the first twelve chapters we discuss maxima and minima of functions
of two variables on both open sets and level curves. Second order deriva-
tives and the Hessian are used to find extremal values on open sets while
the method of Lagrange multipliers is developed for level curves. In the
process we introduce partial derivatives, directional derivatives, the gra-
dient, critical points, tangent planes, the normal line and the chain rule
and also discuss regularity conditions such as continuity of functions and
their partial derivatives and the relationship between differentiation and
approximation. In chapters 13 to 16 we investigate the curvature of plane
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curves. Chapters 18 to 22 are devoted to integration theory on R?. We
study Fubini’s theorem (on the change of order of integration), line and
area integrals and connect them using Green’s theorem. In chapter 17 we
introduce holomorphic (or C-differentiable) functions and using approxi-
mation methods derive the Cauchy-Riemann equations. This introduction
to complex analysis is augmented in the final chapter where Green’s the-
orem is combined with the Cauchy-Riemann equations to prove Cauchy’s
theorem. Partial derivatives enter into and play an important role in every
topic discussed.

As life is not simple many things depend on more than one variable
and it is thus not surprising that the methods developed in this book are
widely used in the physical sciences, economics, statistics and engineering.
We mention some of these applications and give a number of examples in
the text.

Anyone interested in several variable calculus will profit from reading this
book. Students suddenly exposed to the multidimensional situation in its
full generality will find a gentle introduction here. Students of engineering,
economics and science who ask simple but fundamental questions will find
some answers and, perhaps, even more questions here.

This book may be used fully or partially as the basis for a course in
which a lecturer has the option of inserting extra material and developing
more fully certain topics. Alternatively it can be used as supplementary
reading for courses on advanced calculus or for self study. The material
covered in each chapter can be presented in approximately sixty minutes,
although in some of my lectures I was not able to cover fully all examples
in the allocated time, and for aesthetical and mathematical reasons I have,
in writing up these lectures, sometimes ignored the time frame imposed by
the classroom.

It is a real pleasure to acknowledge the help I have received in bringing
this project to fruition. Siobhdn Purcell displayed patience, understanding
and skill in preparing the written text. Alun Carr, Peter O’Neill and Bren-
dan Quigley gave valuable advice on preparing the diagrams, while William
Aliaga-Kelly, Derek O’Connor, Michael Mackey and Richard Timoney per-
formed the onorous task of producing the diagrams. Maciej Klimek my
former colleague (now at Uppsala), Milne Anderson (London) and Pauline
Mellon (Dublin) provided valuable advice and sustained support at all
stages. The mathematics editor at Chapman & Hall, Achi Dosanjh, gave
encouragement and practical support at crucial times. To all these and to
my students at University College Dublin, I offer sincere thanks. I hope
you, the reader, will enjoy this book and I welcome your comments. I can
be contacted at the address below.

Department of Mathematics,

University College Dublin,

Belfield, Dublin 4 (Ireland)
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Functions from R? to R

Summary. We introduce the problem of finding the maxi-
mum and minimum of a real valued function of two variables.
The one dimensional theory suggests that we discuss the
problem for functions defined on open sets and their bound-
aries. We define open sets, consider a possible definition of the
derivative and define the graph of a function of two variables.

In this course we will discuss all possible functions which involve two vari-
ables and so look at functions from R? into R, from R into R? and from
R? into R2. We begin by considering functions from R? into R and our
objective is to obtain methods for finding maxima and minima. If the func-
tions are arbitrarily behaved we get nowhere, so we have to make some
assumptions—we will use the general term regularity conditions—on
the functions considered. These regularity conditions usually relate to con-
tinuity and differentiability. First, however, we try and see, based on our
one dimensional experience, how we might proceed and then return to look
more closely at what we need in order to proceed. The main one dimen-
sional motivation is the following fundamental result.

Theorem 1. If f:[a,b] — R is continuous on the closed interval [a, b)
then f has a maximum and a minimum on [a, b].

In other words there are two points in [a,d], z; and z,, such that
f(@1) £ f(z) £ f(z2)

for all z in [a, b).

The function f has a minimum value f(z;) which is achieved at z,
and a maximum value f(z2) which is achieved at z, (figure 1.1). Both
the maximum and minimum are finite. The maximum (or minimum) may
appear in two ways:
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(i) it may occur at a point inside [a, b], i.e. in (a,b) or
(ii) it may occur at a boundary point, i.e. at either a or b.

f(xz) f(xz)
) Fo
a x, X, b | a X, b=x,
Figure 1.1

On the left in figure 1.1 we see that possibility (i) occurs for both maxi-
mum and minimum while on the right possibility (ii) occurs for the maxi-
mum while possibility (i) occurs for the minimum.

If f is differentiable on (a,b) and the maximum occurs inside then we
have f'(z2) = 0 so our method of proceeding in this case is to look at all =
in (a,b) where f'(z) = 0. We call these the critical points of f. There is
usually only a small number of critical points so we can evaluate f at these
points. This takes care of all possibilities inside and since there are only
two other points—the end points @ and b—we can find f(a) and f(b) and
locate the maximum by choosing which one of this small set of possibilities
gives the largest value of the function.

If we are now considering a function f defined on some subset U of
RZ? it is natural to attempt to try and break the problem (of finding the
maximum) into two problems. To deal with f “inside” we have to define
what the derivative of f might mean.

From the one dimensional theory we see that f'(z) only makes sense
if f is defined at all points near = and, indeed, any method of deciding
that a point z is a maximum or minimum of the function f must in some
way involve the values of f at all points near z. So we first need to define
a suitable analogue of an open interval in R2. We are thus led to the
following definition.

Definition 2. A subset U of R? is open if for each point (zg,y0) in U
there exists 6 > 0 such that

{(z.9); (z = 20)® + (y —90)? < §°} C U.

So a set is open if each point in the set can be surrounded by a small
disc of positive radius which still lies in the set.
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Example 3. {(z,y);z% + y? < 1} is open (figure 1.2).

I
NI

Figure 1.2

Example 4. {(z,y);2? + y* = 1} is not open (figure 1.3).

dh
NI

Figure 1.3

Example 5. {(z,y);z%+y? < 1} is not open (figure 1.4). Points P inside
are all right but points Q on the boundary are not.

I
a ]

Figure 1.4
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Figure 1.5

Notice that the open set in the above examples has < signs in its defini-
tion while the sets which are not open have < or =. Why?

We also see immediately a new complication in finding the maximum if
it occurs on the boundary.

The boundary of [a,b] consisted of just two points whereas the bound-
ary of U C R? consists of a curve ' (see figure 1.5)—which contains an
infinite number of points—and so the method of evaluating the function
at each boundary point is impossible—there are too many points—and a
new method has to be devised. We do this later—it is called the method
of Lagrange multipliers.

So far we have only defined a set on which we might hope to differentiate.
Now we will try to define the derivative of f and afterwards try to see what
we might mean by a critical point. The task of a critical point is to help
locate maxima and minima. From the one variable theory we have

oy = i JE T f(xa) _ o f(ze + Az) — f(20)
feo = e et Az

We consider the following possibility:

m f(z,y) = f(zo,30)
(=.9)=(zo.w0) (Z,¥) — (Z0,¥0)
= f(IO + A.’B, Yo+ Ay) - f(IOa yO)
(Az,Ay)—(0,0) (Az, Ay) )

We immediately run into difficulties. Apart altogether from the possible
definitions of limit the expression

f(.’B, y) - f(IO’yO)
(z,y) — (z0,Y0)
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does not make sense. We cannot divide by a vector. We could identify (z, y)
with the complex number z = z + iy and we may then divide by complex
numbers. This in fact is interesting when considering functions into R? and
we will look into it later (chapter 17). However, for real valued functions it
would lead to a definition in which the only differentiable functions are the
constant functions (see example 62) and this clearly is of no use in finding
maxima and minima. Why? Moreover, if we move up one dimension to
R3? how do we divide by (Ar, Ay, Az)? This won’t work. We return to
fundamentals and try another approach.

y
f(x)=0
\\})‘O
«1_ x ———
0 X, X,

Figure 1.6

In the one dimensional theory we are also led to critical points by consid-
ering the graph and noting that the line that fits closest to the graph—the
tangent line—is horizontal at all critical points (figure 1.6) and that in
general the slope of this line is the derivative {figure 1.7).

ﬂ . X

Figure 1.7

We will try and draw the graph to see if it leads to anything of interest.
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The graph of the function of one variable y = f(z) consists of all points
in R? of the form (z, f(z)) or (z,y) where y = f(z).

Definition 6. If f : U C R? — R then the graph of f consists of the set
of all points

{(z,y, f(z,9)); (z,y) C U}.

Since we are already using z and y to denote variables we often let z =
f(z,y) and then we are considering the points (z,y, z) where z = f(z,y).

Exercises

1.1 Find the natural domain of definition of the following functions (i.e. find
where the functions make sense):

@ few=2 ) =

(¢) f(r,s) = (log(r/s)) = vV1—r.

1.2 Sketch the function f : R — R, f(z) = z° — 3z.
Find, by inspection, intervals [a, ], [c,d] and [e, f] such that

(a) f achieves its maximum and minimum on [a, b] at a and b respectively,

(b) f achieves its maximum on [c, d] both at the point d and at some point
in (c, d),

(c) f achieves both its maximum and minimum on [e, f] at precisely two
points.

2 2
1.3 Let f(z,y) = % n 3/9— and U = {(z,y); f(z,y) < 1}. Sketch the set U.
Show that the point (—1,2) lies in U. Find a positive & such that

{(z,y);z® +(y-1)? <} C U
Show that U is open. What formula describes the boundary of U?
1.4 Give an example of an open set in R? whose boundary consists of two
points.
1.5 Show that the function
flz) = 22% — 922 + 122

has a local maximum and a local minimum, but no maximum and no
minimum on the set (0, 3).
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1.6 By using one variable calculus find the minimum of the function
f@)=2*-10c+9, zeR.
Sketch the graph of f.

1.7 Let f : R — R denote a function with continuous first and second
derivatives and suppose f"(z) # 0 for all x € R. By drawing sketches
convince yourself that f has a minimum on R in each of the following
cases:

(a) f has one local minimum and no local maximum,
(b) f has precisely two local minima and one local maximum.



Partial Derivatives

Summary. We define and examine level sets of the graph
and arrive at the concept of the partial derivative. Examples
of partial derivatives are given.

The graph of f:U € R? - R is a subset of R3 and we will call it a
surface. As we get to study graphs we will see that they have many of the
features that we intuitively associate with surfaces and so our use of the
word surface is not unreasonable. Since the graph is a subset of R? a certain
amount of ingenuity is required in order to obtain a faithful sketch and a
number of standard approaches to this problem have been developed over
the years. One method is to consider cross sections and by examining
sufficiently many cross sections we may get ideas on where the maximum
or minimum might be located.

A cross section of R? is a line and this is determined by a linear equation
in two variables ax + by = c. A cross section of R? is a plane and this is
determined by a linear equation in three variables

az+by+cz=d

where a, b, ¢ and d are real numbers, and by varying these numbers we get
different cross sections. A cross section of a surface consists of the points
on the surface which satisfy the linear equation.

There are many choices for a, b, ¢ and d. We will follow a general principle
in mathematics—take the easiest cases first and examine them. If we are
lucky we get what we want. If we are not lucky we at least have some
experience when we have to consider more complicated cases. A second
principle also comes in here—put as many constants as possible equal to 0
in the first instance and after that take as many as possible equal to 1. I
say “as many as possible” since if we are too enthusiastic we end up with
a situation which is completely trivial.



