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Introduction

Atatime when mathematical modeling is pervading many areas of science and
master’s degree programs in industrial mathematics are being initiated in many
universities, this book is intended as an introduction to continuum mechanics
and mathematical modeling. One of the aims of the book is to reduce the gap
slightly between mathematics and this area of natural science — a gap that
is usually due to the language barrier and to the differences in thinking and
reasoning. This book is written in a style suitable for mathematicians and
adapted to their training. We have tried to remain very close to physics and
to mathematics at the same time by making, in particular, a clear separation
between what is assumed and what is proved.

As it is. the book may appeal as well to a broader audience, such as engi-
neers who would like to have a different perspective on the field, relying less on
physical intuition, and advanced researchers who would like an introduction
to a field new to them.

The core of the book contains the fundamental parts of continuum mecha-
nics: description of the motion of a continuous body. the fundamental law of
dynamics, the Cauchy stress tensor, the constitutive laws. internal energy and
the first principle of thermodynamics, shocks and the Rankine—Hugoniot re-
lations, an introduction to fluid mechanics for inviscid and viscous Newtonian
fluids. and an introduction to linear elasticity and the variational principles in
linear elasticity.

Besides the core of continuum mechanics, this book also contains more
or less detailed introductions to several important related fields that could be
themselves the subjects of separate books: magnetohydrodynamics, combus-
tion, geophysical fluid dynamics, vibrations, linear acoustics. and nonlinear
waves and solitons in the context of the Korteweg—de Vries and the nonlinear
Schrddinger equations.



X Introduction

This book is an extended version of an advanced undergraduate course
taught several times by one of the authors (RT) and taught during the 1995-96
academic year by the other author (AM). The whole book is suitable for a
one-year course at the advanced undergraduate or beginning graduate level.
Parts of it are suitable for a one-semester course either on the fundamentals
of continuum mechanics or on a combination of selected topics.

After briefly describing the objectives and the content of this book, let us
emphasize that this book is a book on mechanics: it is not a book of mathema-
tics, of “abstract” mechanics, or of functional analysis. There is, by choice,
no functional analysis, no Sobolev or Hilbert space in this book, and the
mathematical language is simple. the mathematical tools needed are those
mastered by any mechanical engineer: mainly continuity, differentiation, in-
tegration, and linear algebra. The book is neither a book of “abstract” or
“axiomatic” mechanics; the physical language is simple and very close to
reality.

The prerequisites for ali readers are calculus (differentiation, integration)
and linear algebra (including some notions of tensors); however, a good knowt-
edge of these tools is desirable.

We enjoyed writing this book, which is not at the center of our usual
preoccupations, and we enjoyed the excursions we made in fields that are not
ours. We hope that this book will be useful to the readers, and we welcome
comments on the book.

We thank Eric Simonnet, who kindly drew all the figures in this book, and
Brian Ewald and loana Moise for their careful reading of the manuscript
and their English editing and comments; Djoko Wirosoetisno also con-
tributed to this task. The second author (RT) benefited from very useful
comments by Frédéric Abergel, Armaud Debussche. Hervé Le Meur, and
Laurent Di Menza while they assisted him in teaching parts of this book
at various times, and he is grateful to Robert Kohn for providing very
useful references (not fully exploited) for Chapter 16 and to Jean-Claude
Saut for providing him with very useful references related to Chapters
18 and 19. We wish also to thank Jerry Bona, Philippe Ciarlet, Ciprian
Foias, Tanya Leise, Jacques-Louis Lions, Morton Lowengrub, Oscar Manley,
Tinsley Oden, Jay Walton, and Joseph Zyss for helpful discussions con-
cerning the book. Of course, the continuum mechanics part of this book
has been very much influenced by the French school through the teachings
and the books of Henri Cabannes, Paul Germain, and Maurice Roseau and,

more recently, the books of Sébastien Candel. Georges Duvaut, and Jean
Salengon.



A Few Words About Notations

The notations in this book are not uniformy; this is partly done on purpose and
partly because we had no choice. Indeed modelers usually have to comply or
at least adapt to the notations common in a given ficld, and thus they must be
trained to some flexibility. Another reason for having nonuniform notations
is that different fields are present in this volume, and it was not possible to
find notations fitting “all the standards.”

Another objective while deciding the notations was to choose notations that
can be easily reproduced by hand writing, thus avoiding as much as possible
arrows, boldfaced type, and simple and double underlining with bars or tildes;
in general, in a given chapter of this book, in a given context, it is clear what
a given symbol represents.

Although the notations are not rigid, there are still some repeated pat-
terns in the notations, and we indicate hereafter notations used in several
chapters:

Q2 or O, possibly with indices: domain in R* or R}

x = (xq, x2) or (xy, x3, x3): generic point in R or R?. Also denoted (x, y) or
(x,y.2)

= {a,, ay) or(a,, @z, a3): imtal position in Lagrangian variables

1 time

u = (uy,u2)or (uy, uz, u3), or v or w: vectors in B2 or B3, Also denoted
(u,v)yor{u,v, w)

AB (or X_l; to emphasize): vector from A to B

uor U: velocity

u: displacement vector

y: acceleration

m: mass

Xii



A Few Words About Notations xiit

f. F: forces; usually f for volume forces and F for surface forces
p: density
g: gravity constant. Also used for equation of state for tuids

T or 8: temperature
o: Cauchy stress tensor (in general)
n: unit outward normal on the boundary of an open set Q or O, n = (n;, n3)

orn = (ny,n;,n3)
We will use also the following classical symbols and notations:

d;;: the Kronecker symbol equal to 1 if i = j and to 0 if i # j

¢, will denote the partial derivative d¢/dx;.

The Einstein summation convention will be used: when an index (say j) is
repeated in a mathematical symbol or within a product of such symbols, we
add these expressions for j = 1, 2, 3. Hence



MATHEMATICAL MODELING IN CONTINUUM MECHANICS

Continuum mechanics is widely taught to graduate students in applied mathe-
matics, physics, and engineering, providing the basis for further study in fluid
and solid mechanics. Presentations of the subject, however, vary greatly in
their level of formalism, being either engineering- and example-oriented or
mathematically oversophisticated. Temam and Miranville provide a rigorous
presentation of the underlying mathematics and physics of the problem, avoid-
ing unnecessary use of function spaces. The authors then build on this base
to present core topics within the general themes of fluid and solid mecha-
nics. The brisk style allows the text to cover a wide range of topics, including
viscous flows, magnetohydrodynamics, atmospheric flows, shock equations,
turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrédinger
equation.

This original text should be a unique resource for those studying continuum
mechanics at the advanced undergraduate and beginning graduate level, whether
in engineering, mathematics, physics, or the applied sciences.
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CHAPTER ONE

Describing the Motion of a System:
Geometry and Kinematics

1.1. Deformations

The purpose of mechanics is to study and describe the motion of material
systems, The language of mechanics is very similar to that of set theory
in mathematics: we are interested in material bodies or systems, which are
made of material points or matter particles. A material system fills some part
(a subset) of the ambient space (R"), and the position of a material point is
given by a point in RY; a part of a material system is called a subsystem.

We will almost exclusively consider material bodies that fill a domain
(i.e., a connected open set) of the space. We will not study the mechanically
important cases of thin bodies that can be modeled as a surface (plates, shells)
or as a line (beams, cables). The modeling of the motion of such systems
necessitates hypotheses that are very similar to the ones we will present in
this book, but we will not consider these cases here.

A material system fills a domain €, in R? at a given time 1y, After de-
formation (think, for example. of a fluid or a tennis ball). the system fills a
domain € in R". A material point, whose initial position is given by the point
a € 9, will be, after transtormation, at the point x € .

The deformation can thus be characterized by a mapping as follows (see
Figure 1.1}:

$ae Q> xe Q.

Assuming that matter is conserved during the deformation, we are led to
make the following natural hypothesis:

The function @ is one-to-one from Sy onto Q.

We will further assume that the deformation ® isa diffeomorphism of at least
class C! from Qp into Q. In fact we assume that ® is as smooth as needed.

3



4 Mathematical Modeling in Continuum Mechanics

Q, Q
Figure 1.1: The mapping .

Regularity Assumption

The regularity assumption made on & will actually be general; we will as-
sume that all the functions we introduce are as regular as needed for all the
mathematical operations performed to be justified (e.g., integration by parts,
differentiation of an integral depending on a parameter, etc.). This hypothesis,
which will be constantly assumed in the following, will only be weakened for
the study of shock waves, which correspond to the appearance of discontinuity
surfaces. In that case, we will assume that the map  is piecewise C'.

Let grad ®{a) = VP(a) be the matrix whose entries are the quantities
(3®;/da;)(a). Because @ is a diffeomorphism. the Jacobian det (V) of the
transformation a > x is necessarily different from zero. We will assume in
the following that it is strictly positive. We will later study the role played by
the linear tangent map at point a in relation to the Taylor formula

D(a) = P(ag) + VPlag) - (@ — ap) + o(la - agl).

We will also introduce the dilation tensor to study the deformation of a “small”
tetrahedron,

Displacement

Definition 1.1. The mapu :av> x —a = ®(a) —a is called the displacement;
u(a) is the displacement of the particle a.

Elementary Deformations

Our aim here is to describe some typicai elementary deformations.
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a) Rigid Deformations

The displacement is called rigid (in this case. we should no longer talk about
deformations) when the distance between any pair of points is conserved as
follows:

d(a,a’) = d{x, x)), Ya,a e Sy,
where x = ®(a), x" = ®(a’). This is equivalent to assuming that
b is an isometry from Qg onto 2,

or, when €2 is not included in an affine subspace of dimension less than or
equal to 2,

® is an affine transformation
(translation + rotation).

In this case
t=L-at+c, ceR’ Lelo(RY L'=1L7
and
u(a) =(L — DHa + ¢,
where £,(R?) is the space of orthogonal matrices on R”.

b) Linear Compression or Elongation

A typical example of elongation is given by the linear stretching of an elastic
rod or of a linear spring.

Let (e;. €2. ¢3) be the canonical basis of R*. The uniform elongation in the
direction e = ¢; reads

Xy =A.(11. X2 =, X3 == dsy.

with A > 1; 0 < A < 1 would correspond to the uniform compression of
a linear spring or an elastic rod. The displacement is then given by u(a) =
f{{(x — Da,.0.0] and

A-10
Vo = 0 0
0

0
0]+ 1
0 0



