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Study on Three Dust Storms in China
—Source Characterization of atmospheric Trace Element and
Transport Process of Mineral Aerosol Particles®®

ZHANG Xiaoye', AN Zhisheng', Liu Dongsheng!,
CHEN Two', ZHANG Guangyu', Richard ARIMOTO?,
ZHU Guanghua®, WANG Xinfu®

1 Xi’an Open Laboratory of Loess & Quaternary Geology, Academia Sinica, Xi’an 710061, PRC

2 University of Rhode Island, Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, Narragan-
sett, RI1 02882-1197, USA

3 Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, PRC
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1. Methods

All of the aerosol samples were collected in the spring of 1990 during and after three dust storms.
The first was on April 6 in Xi’an (34. 3°N, 108. 9°E) (dust storm I ); the second was in Shapo-
tou (37.5°N, 105°E ) and Beijing (39. 9°N, 116. 4°E) on April 10 and in Xi’an on April 11 (dust
storm 1) ; and the third on April 25 in Beijing (dust storm III). Shapotou is near the southern
edge of the Tengger Desert and this site is considered more or less representative of a desert
region. The singie-orifice 8-stage cascade impactors [ Proton Induced X-ray Emission ( PIXE)
International Corporation, Tallahassee, Florida] were used for sampling. The flow rates were

', thus providing eight particle fractions with the following nominal ranges

approximately 1 L min~
of particle size, expressed as aerodynamic diameters:

stage 0<CO0. 25 um, stage 1==0. 25 to 0.5 pum, stage 2=0.5 to 1 pm,

stage 3=1to 2 pm, stage 4=2 to 4 pm, stage 5=4 to 8 pm,

stage 6=28 to 16 pm, stage 7>16 pm.

The sampling height was 8 to 10 m and the sampling duration was usually 3—5 hours per day.

The PIXE analyses were performed using the 2. 5 MeV protons with a 50 nA beam current
produced by 1. 7X2 MV tandem accelerator at Beijing Normal University. Using these procedures
we were able to determine the concentrations of 21 elements: Al, As, Br, Ca, Cl, Co, Cr, Cu,

Fe, K, Mg, Mn, Ni, Pb, S, Se, Si, Sr, Ti, V, and Zn. The data were corrected for

@ IR#R Chinese Science Bulletin, 37(11): 940—945, 1992,

@ Project supported by the National Natural Science Foundation of China and the National Science Foundation of
the United States.
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backgrounds for the coated filters.
We combined the concentrations of stage 7 with stage 6 and designated the sum as stage 6.

We did the same for stages 0 and 1 and designated the combination as stage 1.

For quality control/quality assurance (QC/QA), the concentrations of seven main elements
(Al, Ca, Fe, K, Mn, Si, and Ti) were determined in five aliquots of two different samples.
Similar-comparisons were made for two aliquots of a standard reference material ( Geochemical
standard reference sample No. 8, National Bureau of Chemical Exploration Analysis, 1984['7).
The QC/QA tests showed that (1) there were no significant differences between the replicate
analyses of two samples and (2) the analysis for K, Ca, Ti, Fe, Al and Si were within 20% of

the standards; Mn was within 50% of the standard.

2. Results and Discussion

2.1 The Chemical Composition of Aerosol Particles and the Mass-Particle
Size Distributions (MSDs) of Trace Elements

The concentrations of trace elements in the aerosol samples from Shapotou, Xi’ an and Beijing
which include samples collected both during and after dust storms showed that the highest concen-
trations of Al and the other crustally derived elements were observed at Shapotou in the morning
of April 10, 1990. During that dust storm, the Al concentration reached 82 pg m~3; this is
equivalent to a mineral aerosol concentration of ~1 mg m™*, because mineral aerosol is approxi-
mately 8% Al by weight®?. The concentration of Al in Shapotou dropped dramatically (by almost
90% ) in the sample collected later on the same day. In Xi’an and Beijing, the highest atmos-
pheric Al concentrations were 48 and 20 pg m™®, respectively, while the corresponding lowest
concentrations were 10 and 1. 6 ug m™®, respectively.

Enrichment factors were calculated based on the crustal reference data of Taylor'™. Enrich-
ment factors related to crustal source are defined as; EF,,, = (X/AD,./(X/AD ., where X, Al
are expressed in concentrations (e. g. g m™*), and these calculations support the hypothesis that
mineral particles, which most likely originated from the desert and gobi regions of northern and
northwestern China, dominate the concentrations of many elements. One group of eleven ele-
ments (Al, Ca, Cr, Fe, K, Mg, Mn, Si, Sr, Ti, and V ) generally exhibited relative propor-
tions in the aerosol particle samples similar to those in average crustal material. Of these, the
EF... values for Fe, Mg, Si, Sr, and Ti were less than 5 for all stages of the cascade impactor
sample collected in Shvapotou during dust storm II. The EF,,, values for a second group of ele-
ments (As, Br, Cl, Co, Cu, Ni, Pb, S, Se and Zn) in Shapotou, however, indicated that these
elements were increased in content relative to crustal sources even during the dust storms.

We compared the data for a cascade impactor sample collected during dust storm II in Shapo-
tou on April 10 with a sample from the same dust storm collected in Xi’an on April 11 and with a
sample obtained after dust storm II. Many of the elements, including several that normally get

more abundant relative to crustal rock, exhibited similar MSDs in the sample collected during dust

B I Yy T T
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Fig. 1. Mass size distributions for crustally-derived trace elements in Shapotou and Xi’an during and after
dust storm IL 1. Shapotou sample of dust storm II; 2. Xi’an sample of dust storm II; 3. Xi’an sample
after the dust storm. Mass diameter range for the cascade impactor; stage 1 << 0.5 pm, stage 2 =
0.5—1 pm, stage 3=1—2 um, stage 4=2—4 pm, stage 5=4—8 pm, stage 6>8 pum.

storm II in Shapotou (Fig. 1). More than one-third of the mass of the crustally derived elements
occurred on the 6th stage of the cascade impactor (i. e. the largest praticles) , and approximately
80% to 90% of their total mass was on the degree of particles larger than 2 pm aerodynamic
equivalent diameter (stages 4 through 6). The concentrations of the crustal elements increased
with the size of the particles, with an especially sharp increase evident for the 4th stage of the

impactor.
2,2 Changes in Aerosol Composition during Dust Storm 11

The enrichment factors for several of the crustally derived elements (Fe, K, Mg, Mn, Si, Ti,
and V) in the Xi’an samples from dust storm II were more than 30% higher than in Shapotou
samples from the same dust storm. This is because the concentration of Al decreased more rapidly
as the storm passed from Shapotou to Xi’an than those of the other crustal elements, Although
the differences are small, we consider it quite possible for the mineral aerosol to be fractionated
during the ~380 km of transport from Shapotou to Xi’an. Previous studies by Johnson (1976)
suggest that the selective removal of aerosol particles by size leads to mineral sorting and hence
chemical difference in atmospheric vs. dust fall samples. Changes in the enrichment factors also
could be explained if the samples from Xi’ an were influenced by a local source of dust or other
particulate material that was relatively depleted in Al

A comparison of the cascade impactor data for the trace elements in the samples collected

during dust storm II shows that MSDs of several crustal elements (Al, Fe, Mg, Si, Sr, and Ti)
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exhibited similar changes as the dust storm passed from Shapotou to Xi’an. In Xi’an the concentra-
tions of these elements on each of the cascade impactor filters tended to be lower than those in the
samples from the desert region. More importantly, the greatest difference between the Shapotou
and Xi’an samples occurred in the largest particle fraction (i. e. stage 6), indicating that during
atmospheric transport over the relatively short distance from the desert region to the southern
margin of the Loess Plateau of China, some of the mineral aerosol particles were sorted as a function
of size. As the sorting evidently was the most important for the largest particles, it is possible that
the effects of the sorting become less significant as transport proceeds. In fact, MSDs of the trace
elements in the samples collected after the dust storm in Xi’ an were qualitatively similar to those of
marine samples described by Duce*). These results demonstrate that MSDs of trace elements
provide some insight into the sources for aerosol particles but that the sorting of particles during the

initial phase of transport also influences MSDs.
2.3 The Sources for the Mineral Aerosol Particles during the Three dust Storms

During the three dust storms, MSDs of crustally-derived elements (Al, Ca, Fe, K, Mg, Mn, Si,
Sr, and Ti) were generally similar. This was true not only for the samples from the desert region
near Shapotou but also for those from Xi”an and Beijing. However, a comparison of samples from
Shapotou and Xi’ an showed that the ratios of several elements ( Mg/Ti, Al/Fe, Mg/K)
decreased after the dust storms subsided for reasons not yet understood, but possibly related to
fractionation of the mineral aerosol discussed above.

A consideration of the data presented in Table 1 shows that changes in elemental ratios could
occur as a result of particle sorting. The primary assumption for this simulation is that during

transport, the largest particles are removed more rapidly than smaller particles, and theory

Table 1.  Ratios of Mg/Ti, Al/Fe, and Mg/K in Aerosol Particles and Soils from China

Site (Date, 1990) Dust Storm (During/After)® Mg/Ti Al/Fe Mg/K
Xi’an (April 6) I (During) 4. 40 1.11 0. 83
Xi’an (April 7 I (After) 3.13 1.00 0.61
Shapotou (April 10, AM ) II (During) 4. 36 1. 29 0. 81
Shapotou (April 10, PM) II (After) 3.38 1.10 0.77
Beijing (April 10, AM ) II (During) 3.76 0. 85 0. 83
Beijing (April 10, PM) II (After) 2.77 0. 64 0. 68
Xi’an (April 11, AM ) I (During) 4.07 1. 03 1. 00
Xi’an (April 11, PM ) I (After) 3.30 1. 37 0. 68
Beijing (April 25) III (During) 2.78 0. 65
Site Reference Mg/ Ti Al/Fe Mg/K
Xinjiang, China Wen 1989057 4.91 1.23 1.05
Inner Mongolia, China GSS 1984011 2.31 2.17 0.29
Song-Liao Plain, China Wu et al. 1986L6] 1.26

a) During or after the dust storm.
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indicates that the removal of the largest particles larger than 1 pgm in aerodynamic diameter would
cause the Mg/ Ti ratio to decrease by roughly 70% , the Al/Fe ratio to decrease by 20% , the Mg/
K ratio to decrease by roughly 30%.

Further analyses of the elemental ratios show that they differed between dust storms I and II
vs. dust storm III. The ratios for dust storms I and II were consistent with the data for Xinjiang,
while the ratios for dust storm III were typical of a source in Inner Mongolia ( Table 1 ). This pre-
liminary analysis indicates that elemental ratios may vary among source regions. Furthermore,
the analysis of elemental ratios may be useful for future studies of the relationships between
source soils and aerosol particles. Meteorological analyses and evidence from satellite images of

dust storms support the conclusions drawn from the chemical data.

3. Conclusion

During dust storms in China the concentrations of a suite of eleven crustal elements in aerosol
particles were much higher than normal, but the concentrations of these elements decreased rapid-
ly after the storms abated. This marked short-term variability in dust concentrations apparently is
characteristic of the transport of mineral aerosol particles near the source regions in northern and
northwestern China. Among the crustally-derived elements, Al, Fe, Mg, Sr, Si, and Ti were
most strongly affected by the crustal source, and they can be considered as key elements for stu-
dying the atmospheric transport process of mineral particles, MSDs of the crustally-derived ele-
ments exhibited changes that evidently were associated with particle sorting, and thus MSDs may
provide unique information relative to the atmospheric transport of soils. Elemental ratios, espe-

cially Mg/Ti, Al/Fe and Mg/K, may be useful for investigating the sources for aerosol particles.
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