#". BEKGFLR IS GEEIR) _ Microsoft

~ "Windows
Ell‘iﬁ‘ft&f#i’ii‘l'

GZER)

International
. Programming

% %hdows

rv--xaﬁyM%—$ﬁ*ﬁﬂ,
D EAELmREEAR
- FEH VC++ 6.0I2FLHI
m SRR AL RO i A B AL B HE
ol m
" ERRFRUE

[3%] David A. Schmitt &

IERAZFH AR

http://cbs.pku.edu.cn



R gRiE Z S (R ED AR

Microsoft Windows

B LA ARt

Microsoft 28]

R KXKFH R



"EBE N

EHR (HEEEERAE FERD ) 22—, WRWMAFRS FAMAKERLYHER, AR
B VC++i#fER . MBCS. Win32 NLS API. £i&E& API%. & THMmMABHLHE, %uﬁﬁﬁﬁmmﬁ
R T FENBRPLHILUREBHB TR,

2124% HMRARARERRE, BEMLOEAEE, B, BREEANENSEE,
Copyright (2000) by Microsoft Corporation

Original English language edition Copyright © 2000 (year of first publication by author)

By Microsoft Corporation (author)

All rights published by arrangement with the original publisher, Microsoft Press, a division of Microsoft
Corporation, Redmond, Washington, U.S.A.

EZENESFEEICS: EF 01-2000-3030 =

H £ : Microsoft Windows ERR{LIZEFi&iT (EENRR)
HEZEEH: Microsoft A7 &

& # ¥ 2. ISBN 7-900629-39-4/TP - 33

: bR REHRR

IERTRER FRFIERKEKLA 100871
http://cbs.pku.edu.cn

HRRER 62752015 RATER 62765127 62754140 HRHEE 62765127
wdzh@mail.263.net.cn

eI ER R T ER R

JERKE R

FEBRE

787 FKX1092 XK 16 FFE  29.875 HIgk 1200 TF
200059 HE 1/R 200059 A% 1 IREDRI

88.00 7T

EE
i
it

R D& E &
g3
W ook 2 B OEE

R
=g



A B

HERZE, ITHLEMSBEAA.

Microsoft 5] B E AR AERE T HIE LB E 42 T, FHWL T Ev EHLR A
BRERE EAR @A . BEERE, ZAAER LANFARLRBRINEER
22— KR, EHERAECELEBEERK, TERERANERERE. REE
Windows 2000 EiAKHEY, FREE/RT Microsoft KIEFH 1, CTRARKBRTHHREE
BB e, A B E— R REHE B4 Windows 2000 ¥R IHEARBA#E !

THERLE, BEFHEE. 158 Windows MAHBFHIT AR, YIEHFRE Microsoft
NFRBFHBAR, HA Microsoft Windows S NHE, HEEXBMRERR. XE (|
KRREXHAB GEER) ) L, BEITHFEXNE WA REEHENMKREED
BER, DMEFAuAT# &R E A Windows N AT .

Microsoft Fi A KTEE, BIEFEMAEERRIATREER. It HFEBERLE
FIEHE KX RALR 9 M MALIH S, 2N RETRSBONART. COM+ERAR
% . Windows W& 45T . EPRILFERFE . MFC. Windows RfE. RS 284N . Outlook
5 Exchange %2, WHEFERNE, § - HOKAEMSLEM, £PR—HHEXKS%R
BEA. XE (BMBREEZHRNE EHRD ) 3 9 X, FemBEIRmEk A G
MR EE H CFEMN—AS LA, FEISEEMRE. AN, ARMER.

RENBPRET—FEHE R - TZROREER, HEEFEHLKRE, MHEA
FEUBREE. Y TEHEBHEERFRAOHZAELY, FEBPEIANMEFRIATES
WYL E . B4, SABHEEEER CD-ROM, WE BFHREBFEHMAEBHE
Fhi.

AZENTH Microsoft A THLEX TR EREFES . MATEE Microsoft HIGRIESL
RN, AEEEMEFITEEZR, FiUl, XEAPDEMINITENE R, RZUBRA
BB R ELE, SRR AL .

YF, FmEP. S5 Windows M HEF &R A G BEREFIXEEE!

iR &
2000 £ 9 A



Preface

At the start of my programming career more than twenty-five years ago, most
American software designers were blissfully ignorant of computer usage outside
the United States. There was almost no market for packaged software products
because the typical program was developed in house by the company using
it. Although the largest firms were multinational, their various, far-flung divisions
usually took care of their own software development, often by tediously adapt-
ing software originally written by Americans for Americans.

Over the years, I gradually became aware that programmers outside the
United States were encountering serious problems as they tried to adapt Ameri-
can-designed software for use in their own countries. For example, at a UNIX
conference in Copenhagen I heard European programmers bitterly complain
about the American biases built into that operating system. Among their com-
plaints was the pervasive use of non-European characters throughout UNIX and
the C language. I learned that in some countries, important C programming
characters such as the pound sign (#) and square brackets (D don't even appear
on the most popular keyboards! '

Complaints about what I call “chauvinistic programming” swelled during
the 1980s as personal computers appeared on desktops throughout the world
and as a vigorous software product industry emerged. I've heard dozens of
stories about how a clever programmer cobbled up a kludge in order to get some
essential software product working in his or her local environment.

For instance, back in 1984 a friend in Stockholm showed me a little MS-DOS
TSR (terminate and stay resident) program he had written to make Lotus 1-2-3
properly display the various accented Scandinavian characters. Lotus was so busy
with its exploding American market that they couldn’t take the time to change
1-2-3 internally for European character support. Accented characters such as A
could be entered from the Swedish keyboard, but they showed up on the screen
as gobbledygook. My friend solved the problem by having his resident program
periodically scan the video memory and convert the special characters to the
correct form. Although the solution worked, it was somewhat disturbing to see
solid garbage on the screen dissolving into recognizable Swedish as you typed.

. Whenever a non-American related one of these stories, the point was
usually quite simple: Programmers should consider international applications
in the fundamental software design stage, not as an afterthought.



international Programming for Microsoft Windows

This is particularly important now that personal computers are being used
by ordinary people who have neither the time nor the background to deal with
esoteric computerese. These users want the computer to be a simple tool that
is easy to understand and operate. They aren’t getting paid to read large manuals
and figure ways to overcome the limitations imposed by inadequate hardware
and software. They demand that their interface with the computer be conducted
in their native language. Ultimately, they will buy and use software only if it
feels natural to them.

The more I understood this situation, the more confused I became. After
all, like most U.S. programmers, I speak only English. Sure, my four years of
high school Latin enable me to figure out the origin of many English words, to
find my way around the Milan subway system, and even to make some sense
out of Italian or Spanish newspaper headlines. But it appeared that I would have
to become fluent in several languages in order to design international software.
And while I might be able to learn one or two European languages, others such
as Japanese, Chinese, and Arabic looked like formidable barriers.

These depressing thoughts led me to undertake the research which resulted
in this book. The first glimmer of hope came when my company’s Japanese
agent assured me that American programmers don’t need to understand Japa-
nese in order to write software that can cope with that country’s language and
customs. Checking around with other friends and acquaintances throughout
the world, I found that they generally agreed: By following the proper design
and coding rules, any programmer can write multilingual software.

This was really good news! But what are those rules? To discover them,
I poked around in the available literature and attended an excellent seminar on
Asian dual-byte character sets sponsored by IBM’s World Trade division. Through
these activities, I discovered that much work has been done in this area. How-
ever, the results are scattered throughout documents such as the ANSI C and
C++ standards and manuals produced by IBM, Microsoft, and other computer
and operating system vendors.

This book is my attempt to pull these diverse sources together and present
a methodical approach to international programming for the Microsoft Visual
C++ programmer. I decided to concentrate on Visual C++ for several reasons.
First, it’s the development environment I use and teach most frequently. Second,
it's the most popular tool for producing industrial strength Microsoft Windows
applications. And finally, I believe that Windows, C++, MFC, and ATL represent
the state of the art in international programming.



Acknowledgments

Every technical book is a team effort, but none more so than one which covers
a broad topic such as international programming. I was fortunate to work with
an excellent team at Microsoft Press, beginning with Ben Ryan, who encouraged
me to tackle this daunting topic, and Kathleen Atkins, who applied gentle pressure
and positive feedback throughout the 18 months it took me to get the job done.

Julie Xiao went beyond the call of duty. She dug out the “true facts” to
correct my technical errors and misconceptions, fleshed out topics where my
treatment was too light, and verified each of the sample programs. Naturally,
these programs were bug free when I delivered them, but Julie still found some
errors. Many thanks, Julie. ‘

Michelle Goodman, Jennifer Harris, and Kathleen Atkins (wearing another
hat) ensured that the words formed sentences, that the sentences formed para-
graphs, and that they all made sense. Patricia Masserman proofread them all.
As with the sample programs, my prose was “perfect” when I delivered it, but
somehow the team made it better. Many thanks to you, also.

Of the many people who gave this book its look and feel, Gina Cassill,
Michael Kloepfer, and Joel Panchot are most responsible for its interior. If you're
standing in a bookstore right now and you grabbed this one off the shelf (be-
cause of its eye-catching cover), and you like the figures and overall layout,
you'’re appreciating their work. I know I do.

I also want to thank the people outside Microsoft Press who gave their
advice and assistance. Carter Shanklin’s courtesy enabled me to get the project
started. Avery Bishop and Lori Brownell of Microsoft’'s Globalization Team will-
ingly answered my questions about Windows 2000, Uniscribe, and other inter-
national programming topics. P. J. Plauger, Angelika Langer, and David Smallberg
shared their deep knowledge of standard C and C++.

Special thanks to many of my students who encouraged me and contrib-
uted interesting anecdotes and useful advice from their diverse ethnic back-
grounds. One of the nicest aspects of teaching COM and other subjects for
DevelopMentor is that | get to meet so many interesting people.

Finally, after all the words I wrote in this book and others, I've found none
to express my gratitude and love for my wife, Karen. I only hope that actions
say what words cannot.

David A. Schmitt
January, 2000
Saint Louis, Missouri



Introduction

Nicolas Chauvin was a French soldier known for his excessive devotion and
loyalty to Napoleon during the early years of the nineteenth century. His name
is the root of the English word chauvinism, meaning blind patriotism or par-
tiality. Unfortunately, we've recently warped this fine word so that many believe
it characterizes only certain male attitudes toward females. Chauvinism, how-
ever, is the perfect way to describe software development practices that make
it difficult to adapt programs for use in other countries.

Most of us must plead guilty to some level of chauvinistic software design
techniques. We embed prompters and other message text deep in our code so
that translation becomes a major programming effort. Our screen and report
layouts don’t allow translators to rearrange fields or change their lengths to
accommodate other languages and cultures. We often use algorithms for sorting,
scanning, and generating text that rely upon a specific character set (usually
ASCII or EBCDIC) or a specific format, and these algorithms fail when a “foreign
character set” or “foreign formats” are introduced.

Software product companies now recognize the need for more cosmopolitan
design techniques because of the potential for sales in other countries to people
who can’t or won't stray very far from their native tongue. Also, multinational
corporations are realizing that they can minimize programming costs by devel-
. oping common software for their divisions and subsidiaries. In both situations,
we're encountering a new type of user quite different from the highly trained
and specialized personnel who traditionally have worked with computers.

For many years, English was a kind of universal language, a lingua franca
or an Esperanto, among computer programmers, operators, and users. Most
people who had day-to-day contact with computers weren't too upset when
error messages, manuals, and control panel markings weren't in their native lan-
guage. They usually had enough education to cope with English, and many of
them were fluent in it. If they didn’t have that skill, they gradually became pro-
ficient as they wrestled with English-oriented computer manuals and program-
ming languages. They were technical types, like us.



International Programming for Microsoft Windows

Vi

The personal computer has caused this situation to change dramatically.
Today'’s typical PC users want to work mainly in their own languages. For typical
PC users, the PC isn’t an object of veneration as it has been for us technical types.
Rather, it’s merely a piece of office equipment like a copier or a calculator. They
see it as a tool, a means to an end, and they won’t waste time with difficult tools.
They demand that computers have standard human interfaces like the ones
they’'ve come to expect in cars, telephones, and other everyday instruments.
They don’t want to read a lengthy manual in order to use a program, and they
don’t want to communicate with the computer in a foreign language.

I've often heard programmers express disdain for this new breed of non-
technical computer users. “After all,” we geeks say, “the computer isn’t a toy;
it’s a sophisticated piece of equipment, and you have to pay your dues in order
to understand it. These users should at least learn how to resolve IRQ problems!”
But how many of us understand the inner workings of our cars, televisions,
microwave ovens, and camcorders? Do we have much patience when it comes
to reading the owner’s manual? Would we be happy if all of the instructions and
markings were printed in Japanese?

So any software developer who continues to cater only to the technical
computer user is ignoring the mainstream of our business. Clearly, the needs
of the new user community require that programmérs learn more cosmopolitan
software design techniques. Even if the resulting programs are larger, slower,
and more expensive to develop, modern computer applications demand inter-
national solutions, and rapid hardware evolution will compensate for the cost
of internationalization.

This book shows how you can become a proficient international pro-
grammer by using design techniques that will enable your programs for use in
other countries. You'll find that these techniques aren’t much of a burden because
modern operating systems and programming languages do a lot of the work
for you. ‘

Chapters 1 and 2 describe the issues you'll encounter when designing
international software. This section of the book takes a broad look at the major
language and cultural groups to show how their differences impinge upon your
programming activities.

Chapter 3 then traces the history of character sets to show how this evo-
lution has influenced international communication in general and computer
programming in particular. Chapter 4 explains how these character set issues
affect standard C and C++ programs.

Chapters 5 and 6 explore the standard “locale” feature for C and C++, and
Chapter 7 describes the related Microsoft Visual C++ extensions that can sim-
plify international programming.



introduction

Chapters 9 and 10 examine the rich set of National Language Support (NLS)
features that Microsoft has provided in the Win32 operating system environment.
These features go well beyond standard C and C++ by supporting advanced
multilingual applications with a graphical user interface. Because the Win32
application programming interface (API) uses a C language interface, C and C++
programmers can call Win32 functions directly.

Chapter 11 concludes by presenting a set of guidelines for developing
international software. With these in mind, you should be able to make the
proper trade-offs between program complexity and geographic scope.

vii



Table of Gontents

Preface

Acknowledgments

Introduction

chapter 1 The Basic Issues

LOCALE-DEPENDENT SOFTWARE
TERMINOLOGY

chapter 2 Language Differences
DIRECTION
SYMBOLOGY
USAGE

chapter 3 Character Sets
THE EVOLUTION OF CHARACTER SETS
THE EBCDIC CHARACTER SET
THE ASCIl CHARACTER SET
CODE PAGES
THE ANSI CHARACTER SET
THE UNICODE CHARACTER SET

chapter 4 Gharacter Sets in Standard C and C++

INTERNATIONALIZING C AND C++
INTERNATIONALIZING THE C AND C++ LIBRARIES

chapter 5 Locales in Standard C
THE SETLOCALE FUNCTION
USING LOCALE SETTINGS THROUGH THE STANDARD C LIBRARY
CUSTOM FORMATTING WITH LCONV
INPUT CONVERSIONS
WIDE CHARACTER SUPPORT

Xi
xiii

106
114



Table of Contents

chapter 6 Locales in Standard C++ 115
LoCALE AND FACET OBJECTS 115
CLASSIC AND GLOBAL LOCALES 121
USING MULTIPLE LOCALES 122
USING MIXED LOCALES 125
USING LOCALES WITH STREAMS 135

chapter 7 Visual C++ Extensions 159
THE TCHAR.H HEADER FILE ) 159
WHAT ABOUT THE STANDARD C++ LIBRARY? 190

chapter s Character Sets in Microsoft Win32 217
UNICODE IN WINDOWS 2000 218
UNICODE IN WINDOWS 95 AND WINDOWS 98 219
THE BIMODAL WIN32 API 220
WIN32 CONSOLE PROGRAMMING 224
WIN32 GUI PROGRAMMING 242

chapter 9 Locales in Win32 257
LOCALE IDENTIFIERS » 258
THE LOCALE DATABASE 276
WORKING WITH DATE FORMATS AND CALENDARS 288
WORKING WITH TIME FORMATS 297
WORKING WITH NUMBER FORMATS 300
WORKING WITH CURRENCY FORMATS 304
LOCALE-SENSITIVE TEXT OPERATIONS 308
LOCALE-SENSITIVE RESOURCES 325
DESIGNING A LOCALE BROWSER 335

chapter 10 Multilingual Programming with Win32 363
LIMITATIONS OF STANDARD C AND C++ 364
WHAT IS MULTILINGUAL PROGRAMMING? 365
THE MULTILINGUAL INPUT API 370

THE MULTILINGUAL OUTPUT API 389



Table of Contents

chapter 11 Guidelines for International Programming 429
INTERNATIONAL COM PROGRAMMING 430
INTERNATIONAL WEB PROGRAMMING 434
INTERNATIONAL SPEECH PROCESSING 436
INTERNATIONAL PROGRAMMING GUIDELINES 437

Bibliography 441

Index 445



Chapter 1

The Basic Issues

The challenge before us is to design software that can be easily adapted for use
in other countries. To face this challenge, we programmers must first gain a
general understanding of the cultural differences that have an effect on software
design. This chapter and the next two describe the most important of these
differences.

I must make a disclaimer at this point. Although I've traveled outside the
United States many times (primarily in Europe and Japan), I'm neither a linguist
nor a cultural expert. Sure, I can decipher European road maps' and find my
way around the Tokyo subway system. I've also become pretty adept at handling
foreign currency and don’t get cheated too much when haggling with a street
vendor. I've never missed a meal (although I probably should) because there’s
usually something on the menu that I understand. (Besides, every place I've
visited has had a McDonald’s nearby.)

In other words, my knowledge of non-U.S. locales is about the same as any
other well-traveled U.S. businessperson. So how can I presume to write this book?
Well, I've seen many examples of both good and bad international software, and
I firmly believe that you don’t need to be multicultural, multilingual, or a “Renais-
sance dude” to enable your software for global usage. You must understand the
“rules of internationalization,” however, and the technology that supports them.
Then by diligently following the rules, you will produce generalized programs
that other software experts can adapt to specific languages and cultures.

1. I must thank the good brothers at Saint Mary’s High School who forced me to study Latin
for four years. Since many European languages are based on this “dead language,” I've found
it amazingly easy to decipher maps, road signs, and newspaper headlines. Of course, occa-
sionally I get the wrong meaning, such as that time I drove out of the Frankfurt Airport parking
garage via the entrance ramp.



International Programming for Microsoft Windows

LOCALE-DEPENDENT SOFTWARE

At the risk of stating the obvious, I'll begin by observing that any program with
a nontrivial human interface is likely to be locale dependent. Humans usually
communicate through words, which dre written or spoken, and pictures, which
are either drawn or portrayed by some form of body language. This interface
works best if it’s instinctively familiar to both parties in the conversation—that
is, if both people share the same language and culture. For example, the offen-
sive hand gesture known as “flipping the bird” in the United States is done in
a completely different way in Italy. The first time I drove in Italy, I thought the
Italian drivers were just giving me a friendly wave.

The situation is no different when a human and a computer communicate.
The computer would probably be most efficient if you could converse with it
in simple binary, but you're most comfortable if the computer uses words and
pictures that you can readily understand. Fortunately, the computer has no vote
in this matter. It's up to the programmer to instruct the machine to use appro-
priate human communication techniques.

In most cases, the human-computer dialog is conducted in the human’s
written language and with the help of some relatively simple pictures such as
icons, mathematical charts, or musical scores. These pictures tend to be locale
independent, except for words that might be embedded within them. Often the
embedded words need no translation because they’re part of an international
jargon associated with the picture. For instance, musical scores use certain Italian
words that are recognized by musicians throughout the world. Similarly, our
international community of computer specialists uses a subset of English for
Basic, C, C++, Java, Fortran, Pascal, Cobol, RPG, and other programming lan-
guages. As I mentioned earlier, this is why many of us mistakenly assume that
computer users are also familiar with English.

Some computer applications employ more complex forms of communi-
cation such as voice recognition and synthesis or expressive graphics of the “Max
Headroom” variety. This book won’t describe these forms of communication
because relatively few computer users and programmers are currently exposed
to them. Furthermore, complex aural and visual communication techniques are
still more theory than practice, and the technology is quite expensive. Fortu-
nately, these forms of communication are extremely country dependent, and
so the scientists and engineers evolving this branch of computing are already
thinking of international solutions. For example, imagine how shortsighted it
would be for a car manufacturer to incorporate a computerized verbal warning
system that could express itself only in Swedish.



Chapter 1 The Baslc issues

This book concentrates on the more prevalent written forms of human-
computer communication, which are implemented by means of keyboards,
display screens, and printers. This book also focuses on desktop computers
rather than minicomputers or mainframes because most major new human
interface work is being done on the various personal computer platforms.

Furthermore, this book examines cosmopolitan software examples that are
based on the Microsoft Win32 operating system model and the C++ program-
ming language because they have the most complete set of international pro-
gramming features that I've found.

Before leaving this topic, I must point out that some software can be
chauvinistic even though it has little or no human interface. For example, con-
sider a program that’s invoked through a simple command line to sort a file in
alphabetical order. This program must cope with the fact that different countries
use different alphabets. It can’t simply sort characters by their numeric codes, since
that usually works only with the English alphabet. This and other subtle locale
dependencies are covered in more detail when I describe character sets.

Adaptation Methods

Preparing software for use in a particular country is a two-step process. First
the designer must enable the program for international usage. Then someone—
probably not the original designer—must adapt the program to each country
in which it will be used. In some ways, this enabling and adapting process is
similar to the two-step process used in the international book publishing busi-
ness. The original author writes the book in his or her native language, and then
other writers translate it into various languages, depending on where the pub-
lisher decides to sell the book.

All of the techniques and guidelines presented in this book are concerned
with the enabling step, since that’s our primary concern as software designers.
We need to understand the adaptation step, however, because it can become
a major cost item, especially if we choose the wrong enabling technique.

For example, you can enable a program by isolating all of the prompters
and messages and putting them into header files that are compiled with the
source files. In this case, the adaptation step requires that someone edit or
replace the header files, compile all of the program source, and link the object
files to produce a new executable file. This work is best done by another pro-
grammer who can handle the inevitable compiler error messages and can do
at least a small amount of regression testing to ensure that the new executable
works correctly.



International Programming for Microsoft Windows

Suppose instead that you enable the program by placing prompters and
messages into a data file processed during the program’s initialization phase.
In that case, a nonprogrammer can supply the appropriate data file for his or
her country and can easily verify that the program operates correctly with that
data. Generally, this second technique makes the adaptation step cheaper and
less prone to introducing program errors.

I've found that there’s one simple but important question you must ask
before choosing a particular enabling technique: Who will be adapting this
software for use in other countries? The possibilities are

M  The original development team
Another development team

A professional translation group

The end user

The local software distributor

No single answer is the only correct one because teams, projects, products,
and markets have so many differences. Furthermore, the adaptation step can
be spread out among several organizations, and this often causes the enabling
technique to change as the program evolves. Early adaptations for the most
important markets are handled by highly skilled people, possibly other program-
mers, in order to work out the kinks in the enabling technology. Then the later
adaptations are handled by less skilled (and less expensive) translators.

For instance, I once worked on a project in which the programming team
included a person fluent in German. We used message files to enable the soft-
ware for international use and then tested this technique by actually doing the
German adaptation from the original English. Our major European distributor
later adapted the program for the French and Italian markets, while some clever
users did the work for Spanish, Flemish, Swedish, and several other languages.
In the second version of the software, we gathered all of these adaptations into
a library and changed the installation procedure so that the end user could
simply choose the appropriate language.

Let’s consider the merits of these adaptation methods. Then I'll explain
which enabling techniques are appropriate for them.

Adaptation by the Original Development Team

In some ways, the original development team is ideally suited to handle the
adaptation of a software package to other languages. They have the knowledge
and the tools to build the program from its source code and can deal with
language differences at that level, which usually resuits in the smallest and fastest



