Les

2 g [KR 3 R

RNARSHAGH

(SR3ZhR)

Compurcr ()rg;mi'/,ati(m
Architecture

Linda Null Julia Lobur -
EYRRIMIAY RIZRIMIAZ

#lot Tl AR 3

China Machine Press

TRNARSBRE

(BT

Linda Null and Julia Lobur: The Essentials of Computer Organization and Architecture
(ISBN 0-7637-0444-X).

Copyright © 2003 by Jones and Bartlett Publishers, Inc.

All rights reserved.

Original English language edition published by Jones and Bartlett Publishers, Inc., 40 Tall Pine
Drive, Sudbury, MA 01776.

This edition is licensed for distribution and sale in the People’s Republic of China only,

excluding Hong Kong, Taiwan and Macao and may not be distributed and sold elsewhere.

#4353 3 ZZEN AR fJones and Bartlett Publishers, Inc. $& ¥ HHAR .

BRRA R P RARFMERN (FREFEEE. 68, RITGE) #ERT, *
SRRMEBH 0 HERHERRBEENTA,
BERFH, RRLR.

*#lﬁuﬁﬁ% E%. 01-2004-5737
BEEERE (CIP) Mg

HRNAR Sk RER () / (35) H/R Null, L) FE; AL SURT iR |
2004.11

(BRIREHBE)
4548 3¢ The Essentials of Computer Organization and Architecture
ISBN 7-111-15311-1

Ioib 0. I HRALGRLH-%3 V. TP303
AR 4 E B CIPHIRE - (2004) 0988788

FUR T L AR GERAmREE S AR S AR 100037)
KES®: BirE

AR PNEPMERL R - FEBELRRGTHES
2004 11 A SIS KENR

787Tmm x 1092mm 1/16 - 38.25 E3g

EN%. 0001-3000 fit

Efr: 5500 ¢

LA, mABR. BR. T, dFdRTRiER
A3 Mtk (010) 68326294

HhREBS

XEE PR, BRI FHR MR P B EARAME, FE5ERER RARH¥ENE
GBI AT W RS, BERIENESE, EXEEGEERRBROA T ER LKE
H, MR, ERHLLHHERP, XENT LR SEERFBERBEERES, HENLEFS
B £ % AL)[R b By ACFBRFD 0% WO BAT £, bR AR S RHE EE, TOUER THR
RIvERE, TRET2ARMOFEE, BEFEEARME, XAFEENE, KO EHASEE AR
iR .

EF, EARFELAKRMOED T, REMUREL L BRE, XEW AL HERER
BY), X3 HREHLEF Rt R R RAYLE, Rk, i BB IRERET RS LR
HEgERRE, EREEEEAREMNAZE. M ARBVCHIRT, XEFREEREKT
BRI R RO HERRENZSHEMNAT SEBE L L. FHik, sl —HESIRET
ROLEM A RE TR T LN RBEBURME IR, hit 5t FEH. B EEMHE
F— e REFH % 2B, '

U Tolk ARt B U5 BAR AR R RIRE “HREABEFRS . H19984E7 4,
CEATRGTEERABRETH#E, BEERIMEEM L., 22 LENAIWESH, BRNSE
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann &5 34 Y A By TR
HHAEXER, NENMIEA N EE Fh 34t 8% HTanenbaum,, Stroustrup, Kernighan, Jim
Gray %k Ui& KM —H# 28 S, UL “HEHFEAE" HBRRDME, SigEes). WU
. KEASEMHEE, REARTXEMNSHS LKA,

‘UREAFRZEMAS” HHRTHESH TERANMEESHRDEY, BRANETRKARET HE
LR R, ST THEE THENHEENTIA, HEBNESLELYXERELESE
M, ANLETWARXBATEEEF, €4, “HELBEZAE B2HR TEE, M,
REBBREZREPRLTRFNHOE, HBETZERRAAEXEMSE BHE, A —S#
I"E5RBITT T BEHER,

B E% FHR IR P TEMB Ak R EH HIL, HFF AE SN B Eobt 19E K Fn B A
BEA—AFOG B, Atk, LEATRMASHHEHMM DE, £ “REHT™ BEARNZT
HIREA R T RENE M B “HEB2EAE" 250, STRENRASobt, T35k FF B B
‘REFRBE" FN, SIHLEETHEFEFHSHE “Schaum’s Outlines” HAFIHK “LEL
BEESIRR RN . AT RIEX ZENBHRSE, R b T B4 SR fEmiRs, &
EARBETREBER, ERAE. BEk¥. EHREKRY. EER¥. LEXERE.
B KF . BHL K%, FEREAE. WRELLAY. BERBKRE. PEARKXY., X
ﬁﬁﬁ%k%‘%ﬁm%k%‘*m*%‘ﬁﬂEﬂIﬁi,ﬂMk%‘W%I%%.*@@

iv

K& BR2WMFNIEH LFENELKRFMFFAET BN SR EL LUK “F
FHEREAR", ARMNBHEE B LML REE.

X = SR P F IR L UG RAMNREM S H, HERN R B R X LK
BEEEITEN., EPiF2HEMEH E4M. L T., Stanford, U.C. Berkeley, C. M. U. %t} £
KEFRM. AMUEE TRAFRW. BEEH. BERGE. HRIGRE W, BEE. RiER
H, RGTE EEY. BE5HME. EEEEEEAKRFETRILE LT R FiROELRE,
MAZFAREG—AMHEEERUIEZTF. ANHL=Z+ER A%, ANCE Lt RNILE
Pl R . 7EX E B MR AN KIERRSIZT, RFLRAETBILRENERPHEE
MAZE,

BREHIEE. M EH. —RNES. FHRIOER, FanEE, XEEHRERMNHE
BAETHRENRIE, BROGBEAREREBREX, MR ELERRINEHX—-4R BRHE
ERB). BAAHRRA BB GRS AR A, 43 A 7 R0 E I Fik &3 B L ERE
BURBTHE, RINOKRFRLEHWT:

B, FhR 44 : hzedu@hzbook.com

BB iE. (010) 68995264

BeARat: ALK E HERESLS
R ES . 100037

ERIBSERS

X W
5 %
55
R T
B AR
< E R
Bt &
£3 &

(et EC B | L)

R R S
Iy EBF
&7 %

&

LR &3
7618 R
R
S -3

B

‘H

£ et
X%
FRF
M) 2
F
LEX 1
£

2 KA
LY
A
R4
L
o
A2 35

In memory of my father, Merrill Cornell, a pilot and man of endless talent and courage,
who taught me that when we step into the unknown, we either find solid ground, or we
learn to fly.

—L.M.N.

To the loving memory of my mother, Anna J. Surowski, who made all things possible for
her girls.
—J.M.L.

PREFACE

TO THE STUDENT

This is a book about computer organization and architecture. It focuses on the
function and design of the various components necessary to process informa-
tion digitally. We present computing systems as a series of layers, starting with
low-level hardware and progressing to higher-level software, including assem-
blers and operating systems. These levels constitute a hierarchy of virtual
machines. The study of computer organization focuses on this hierarchy and the
issues involved with how we partition the levels and how each level is imple-
mented. The study of computer architecture focuses on the interface between
hardware and software, and emphasizes the structure and behavior of the system.
The majority of information contained in this textbook is devoted to computer
hardware, and computer organization and architecture, and their relationship to
software performance.

Students invariably ask, “Why, if I am a computer science major, must I learn
about computer hardware? Isn’t that for computer engineers? Why do I care
what the inside of a computer looks like?” As computer users, we probably do
not have to worry about this any more than we need to know what our car looks
like under the hood in order to drive it. We can certainly write high-level lan-
guage programs without understanding how these programs execute; we can use
various application packages without understanding how they really work. But
what happens when the program we have written needs to be faster and more

viii

Preface

efficient, or the application we are using doesn’t do precisely what we want? As
computer scientists, we need a basic understanding of the computer system itself
in order to rectify these problems.

There is a fundamental relationship between the computer hardware and the
many aspects of programming and software components in computer systems. In
order to write good software, it is very important to understand the computer sys-
tem as a whole. Understanding hardware can help you explain the mysterious
errors that sometimes creep into your programs, such as the infamous segmenta-
tion fault or bus error. The level of knowledge about computer organization and
computer architecture that a high-level programmer must have depends on the
task the high-level programmer is attempting to complete.

For example, to write compilers, you must understand the particular hardware
to which you are compiling. Some of the ideas used in hardware (such as pipelin-
ing) can be adapted to compilation techniques, thus making the compiler faster
and more efficient. To model large, complex, real-world systems, you must
understand how floating-point arithmetic should, and does, work (which are not
necessarily the same thing). To write device drivers for video, disks, or other /O
devices, you need a good understanding of 1/0 interfacing and computer architec-
ture in general. If you want to work on embedded systems, which are usually very
resource-constrained, you must understand all of the time, space, and price trade-
offs. To do research on, and make recommendations for, hardware systems, net-
works, or specific algorithms, you must acquire an understanding of
benchmarking and then learn how to present performance results adequately.
Before buying hardware, you need to understand benchmarking and all of the
ways in which others can manipulate the performance results to “prove” that one
system is better than another. Regardless of our particular area of expertise, as
computer scientists, it is imperative that we understand how hardware interacts
with software.

You may also be wondering why a book with the word essentials in its title is
so large. The reason is twofold. First, the subject of computer organization is
expansive and it grows by the day. Second, there is little agreement as to which
topics from within this burgeoning sea of information are truly essential and
which are just helpful to know. In writing this book, one goal was to provide a
concise text compliant with the computer architecture curriculum guidelines
jointly published by the Association for Computing Machinery (ACM) and the
Institute of Electrical and Electronic Engineers (IEEE). These guidelines encom-
pass the subject matter that experts agree constitutes the “essential” core body of
knowledge relevant to the subject of computer organization and architecture.

We have augmented the ACM/IEEE recommendations with subject matter
that we feel is useful—if not essential—to your continuing computer science
studies and to your professional advancement. The topics we feel will help you in
your continuing computer science studies include operating systems, compilers,
database management, and data communications. Other subjects are included
because they will help you understand how actual systems work in real life.

Preface ix

We hope that you find reading this book an enjoyable experience, and that
you take time to delve deeper into some of the material that we have presented. It
is our intention that this book will serve as a useful reference long after your for-
mal course is complete. Although we give you a substantial amount of informa-
tion, it is only a foundation upon which you can build throughout the remainder
of your studies and your career. Successful computer professionals continually

add to their knowledge about how computers work. Welcome to the start of your
journey.

TO THE INSTRUCTOR
About the Book

This book is the outgrowth of two computer science organization and architecture
classes taught at The Pennsylvania State University Harrisburg campus. As the
computer science curriculum evolved, we found it necessary not only to modify
the material taught in the courses but also to condense the courses from a two-
semester sequence into a three credit, one-semester course. Many other schools
have also recognized the need to compress material in order to make room for
emerging topics. This new course, as well as this textbook, is primarily for com-
puter science majors, and is intended to address the topics in computer organiza-
tion and architecture with which computer science majors must be familiar. This
book not only integrates the underlying principles in these areas, but it also intro-
duces and motivates the topics, providing the breadth necessary for majors, while
providing the depth necessary for continuing studies in computer science.

Our primary objective in writing this book is to change the way computer
organization and architecture are typically taught. A computer science major
should leave a computer organization and architecture class with not only an
understanding of the important general concepts on which the digital computer is
founded, but also with a comprehension of how those concepts apply to the real
world. These concepts should transcend vendor-specific terminology and design;
in fact, students should be able to take concepts given in the specific and translate
to the generic and vice versa. In addition, students must develop a firm founda-
tion for further study in the major.

The title of our book, The Essentials of Computer Organization and Architec-
ture, is intended to convey that the topics presented in the text are those for which
every computer science major should have exposure, familiarity, or mastery. We do
not expect students using our textbook to have complete mastery of all topics pre-
sented. It is our firm belief, however, that there are certain topics that must be mas-
tered; there are those topics for which students must have a definite familiarity; and
there are certain topics for which a brief introduction and exposure are adequate.

We do not feel that concepts.presented in sufficient depth can be learned by
studying general principles in isolation. We therefore present the topics as an inte-

x Preface

grated set of solutions, not simply a collection of individual pieces of informa-
tion. We feel our explanations, examples, exercises, tutorials, and simulators all
combine to provide the student with a total learning experience that exposes the
inner workings of a modern digital computer at the appropriate level.

We have written this textbook in an informal style, omitting unnecessary jar-
gon, writing clearly and concisely, and avoiding unnecessary abstraction, in
hopes of increasing student enthusiasm. We have also broadened the range of top-
ics typically found in a first-level architecture book to include system software, a
brief tour of operating systems, performance issues, alternative architectures, and
a concise introduction to networking, as these topics are intimately related to
computer hardware. Like most books, we have chosen an architectural model, but
it is one that we have designed with simplicity in mind.

Relationship to Computing Curricula 2001

In December of 2001, the ACM/IEEE Joint Task Force unveiled the 2001 Com-
puting Curricula (CC-2001). These new guidelines represent the first major revi-
sion since the very popular Computing Curricula 1991. CC-2001 represents
several major changes from CC-1991, but we are mainly concerned with those
that address computer organization and computer architecture. CC-1991 sug-
gested approximately 59 lecture hours for architecture (defined as both organiza-
tion and architecture and labeled AR), including the following topics: digital
logic, digital systems, machine-level representation of data, assembly-level
machine organization, memory system organization and architecture, interfacing
and communication, and alternative architectures. The latest release of CC-2001
(available at www.computer.org/education/cc2001/) reduces architecture cover-
age to 36 core hours, including digital logic and digital systems (3 hours),
machine-level representation of data (3 hours), assembly-level machine organiza-
tion (9 hours), memory system organization and architecture (5 hours), interfac-
ing and communication (3 hours), functional organization (7 hours), and
multiprocessing and alternative architectures (3 hours). In addition, CC-2001 sug-
gests including performance enhancements and architectures for networks and
distributed systems as part of the architecture and organization module for CC-
2001. We are pleased, after completely revising our course and writing this text-
book, that our new material is in direct correlation with the ACM/IEEE 2001
Curriculum guidelines for computer organization and architecture as follows:

ARL1. Digital logic and digital systems (core): Chapters 1 and 3

AR2. Machine-level representation of data (core): Chapter 2

AR3. Assembly-level machine organization (core): Chapters 4, 5 and 6
AR4. Memory system organization and architecture (core): Chapter 6
ARS. Interfacing and communication (core): Chapter 7

AR6. Functional organization (core): Chapters 4 and 5

AR7. Multiprocessing and alternative architectures (core): Chapter 9

Preface Xi

ARS8. Performance enhancements (elective): Chapters 9 and 10

AR9. Architecture for networks and distributed systems (elective):
Chapter 11

Why another text?

Features

No one can deny there is a plethora of textbooks for teaching computer organiza-
tion and architecture already on the market. In our 25-plus years of teaching these
courses, we have used many very good textbooks. However, each time we have
taught the course, the content has evolved, and, eventually, we discovered we
were writing significantly more course notes to bridge the gap between the mate-
rial in the textbook and the material we deemed necessary to present in our
classes. We found that our course material was migrating from a computer engi-
neering approach to organization and architecture toward a computer science
approach to these topics. When the decision was made to fold the organization
class and the architecture class into one course, we simply could not find a text-
book that covered the material we felt was necessary for our majors, written from
a computer science point of view, written without machine-specific terminology,
and designed to motivate the topics before covering them.

In this textbook, we hope to convey the spirit of design used in the develop-
ment of modern computing systems and what impact this has on computer sci-
ence students. Students, however, must have a strong understanding of the basic
concepts before they can understand and appreciate the non-tangible aspects of
design. Most organization and architecture textbooks present a similar subset of
technical information regarding these basics. We, however, pay particular atten-
tion to the level at which the information should be covered, and to presenting
that information in the context that has relevance for computer science students.
For example, throughout this book, when concrete examples are necessary, we
offer examples for personal computers, enterprise systems, and mainframes, as
these are the types of systems most likely to be encountered. We avoid the “PC
bias” prevalent in similar books in the hope that students will gain an apprecia-
tion for the differences, similarities, and the roles various platforms play within
today’s automated infrastructures. Too often, textbooks forget that motivation is,
perhaps, the single most important key in learning. To that end, we include many

real-world examples, while attempting to maintain a balance between theory and
application.

We have included many features in this textbook to emphasize the various con-
cepts in computer organization and architecture, and to make the material more
accessible to students. Some of the features are listed below:

* Sidebars. These sidebars include interesting tidbits of information that go a

step beyond the main focus of the chapter, thus allowing readers to delve fur-
ther into the material.

Xii

Preface

* Real-World Examples. We have integrated the textbook with examples from
real life to give students a better understanding of how technology and tech-
niques are combined for practical purposes.

» Chapter Summaries. These sections provide brief yet concise summaries of
the main points in each chapter.

o Further Reading. These sections list additional sources for those readers who
wish to investigate any of the topics in more detail, and contain references to
definitive papers and books related to the chapter topics.

* Review Questions. Each chapter contains a set of review questions designed to
ensure that the reader has a firm grasp on the material.

* Chapter Exercises. Each chapter has a broad selection of exercises to rein-

force the ideas presented. More challenging exercises are marked with an
asterisk.

» Answers to Selected Exercises. To ensure students are on the right track, we
provide answers to representative questions from each chapter. Questions with
answers in the back of the text are marked with a blue diamond. -

* Special “Focus On” Sections. These sections provide additional information
for instructors who may wish to cover certain concepts, such as Kmaps and

input/output, in more detail. Additional exercises are provided for these sec-
tions as well.

* Appendix. The appendix provides a brief introduction or review of data struc-
tures, including topics such as stacks, linked lists, and trees.

* Glossary. An extensive glossary includes brief definitions of all key terms
from the chapters.

* Index. An exhaustive index is provided with this book, with multiple cross-
references, to make finding terms and concepts easier for the reader.

About the Authors

We bring to this textbook not only 25-plus years of combined teaching experi-
ence, but also 20 years of industry experience. Our combined efforts therefore
stress the underlying principles of computer organization and architecture, and
how these topics relate in practice. We include real-life examples to help students
appreciate how these fundamental concepts are applied in the world of computing.
Linda Null received a Ph.D. in Computer Science from Iowa State University
in 1991, an M.S. in Computer Science from Iowa State University in 1989, an
M.S. in Computer Science Education from Northwest Missouri State University
in 1983, an M.S. in Mathematics Education from Northwest Missouri State Uni-
versity in 1980, and a B.S. in Mathematics and English from Northwest Missouri
State University in 1977. She has been teaching mathematics and computer sci-
ence for over 25 years and is currently the Computer Science graduate program
coordinator at The Pennsylvania State University Harrisburg campus, where she
has been a member of the faculty since 1995. Her areas of interest include com-
puter organization and architecture, operating systems, and computer security.

Preface Xxiii

Julia Lobur has been a practitioner in the computer industry for over 20
years. She has held positions as a systems consultant, a staff programmer/analyst,
a systems and network designer, and a software development manager, in addi-
tion to part-time teaching duties.

Prerequisites

The typical background necessary for a student using this textbook includes a year
of programming experience using a high-level procedural language. Students are
also expected to have taken a year of college-level mathematics (calculus or dis-
crete mathematics), as this textbook assumes and incorporates these mathematical
cancepts. This book assumes no prior knowledge of computer hardware.

A computer organization and architecture class is customarily a prerequisite
for an undergraduate operating systems class (students must know about the
memory hierarchy, concurrency, exceptions, and interrupts), compilers (students
must know about instruction sets, memory addressing, and linking), networking
(students must understand the hardware of a system before attempting to under-
stand the network that ties these components together), and of course, any

advanced architecture class. This text covers the topics necessary for these
courses.

General Organization and Coverage

Our presentation of concepts in this textbook is an attempt at a concise, yet thor-
ough, coverage of the topics we feel are essential for the computer science major.
We do not feel the best way to do this is by “compartmentalizing” the various
topics; therefore, we have chosen a structured, yet integrated approach where
each topic is covered in the context of the entire computer system.

As with many popular texts, we have taken a bottom-up approach, starting
with the digital logic level and building to the application level that students
should be familiar with before starting the class. The text is carefully structured
so that the reader understands one level before moving on to the next. By the time
the reader reaches the application level, all of the necessary concepts in computer
organization and architecture have been presented. Our goal is to allow the stu-
dents to tie the hardware knowledge covered in this boek to the concepts learned
in their introductory programming classes, resulting in a complete and thorough
picture of how hardware and software fit together. Ultimately, the extent of hard-
ware understanding has a significant influence on software design and perform-
ance. If students can build a firm foundation in hardware fundamentals, this will
go a long way toward helping them to become better computer scientists.

The concepts in computer organization and architecture are integral to many
of the everyday tasks that computer professionals perform. To address the numer-
ous areas in which a computer professional should be educated, we have taken a
high-level look at computer architecture, providing low-level coverage only when
deemed necessary for an understanding of a specific concept. For example, when
discussing ISAs, many hardware-dependent issues are introduced in the context

xiv

Preface

of different case studies to both differentiate and reinforce the issues associated
with ISA design.

The text is divided into eleven chapters and an appendix as follows:

* Chapter 1 provides a historical overview of computing in general, pointing
out the many milestones in the development of computing systems, and allow-
ing the reader to visualize how we arrived at the current state of computing.
This chapter introduces the necessary terminology, the basic components in a
computer system, the various logical levels of a computer system, and the von
Neumann computer model. It provides a high-level view of the computer sys-
tem, as well as the motivation and necessary concepts for further study.

* Chapter 2 provides thorough coverage of the various means computers use to
represent both numerical and character information. Addition, subtraction,
multiplication and division are covered once the reader has been exposed to
number bases and the typical numeric representation techniques, including
one’s complement, two’s complement, and BCD. In addition, EBCDIC,
ASCII, and Unicode character representations are addressed. Fixed- and float-
ing-point representation are also introduced. Codes for data recording and
error detection and correction are covered briefly.

* Chapter 3 is a classic presentation of digital logic and how it relates to
Boolean algebra. This chapter covers both combinational and sequential logic
in sufficient detail to allow the reader to understand the logical makeup of
more complicated MSI (medium scale integration) circuits (such as decoders).
More complex circuits, such as buses and memory, are also included. We have
included optimization and Kmaps in a special “Focus On” section.

* Chapter 4 illustrates basic computer organization and introduces many funda-
mental concepts, including the fetch-decode-execute cycle, the data path,
clocks and buses, register transfer notation, and of course, the CPU. A very
simple architecture, MARIE, and its ISA are presented to allow the reader to
gain a full understanding of the basic architectural organization involved in
program execution. MARIE exhibits the classical von Neumann design, and
includes a program counter, an accumulator, an instruction register, 4096 bytes
of memory, and two addressing modes. Assembly language programming is
introduced to reinforce the concepts of instruction format, instruction mode,
data format, and control that are presented earlier. This is not an assembly lan-
guage textbook and was not designed to provide a practical course in assembly
language programming. The primary objective in introducing assembly is to
further the understanding of computer architecture in general. However, a sim-
ulator for MARIE is provided so assembly language programs can be written,
assembled, and run on the MARIE architecture. The two methods of control,
hardwiring and microprogramming, are introduced and compared in this chap-

ter. Finally, Intel and MIPS architectures are compared to reinforce the con-
cepts in the chapter.

* Chapter 5 provides a closer look at instruction set architectures, including
instruction formats, instruction types, and addressing modes. Instruction-level

Preface xv

pipelining is introduced as well. Real-world ISAs (including Intel, MIPS, and
Java) are presented to reinforce the concepts presented in the chapter.

* Chapter 6 covers basic memory concepts, such as RAM and the various mem-
ory devices, and also addresses the more advanced concepts of the memory
hierarchy, including cache memory and virtual memory. This chapter gives a
thorough presentation of direct mapping, associative mapping, and set-associa-
tive mapping techniques for cache. It also provides a detailed look at overlays,
paging and segmentation, TLBs, and the various algorithms and devices asso-
ciated with each. A tutorial and simulator for this chapter is available on the
book’s website.

» Chapter 7 provides a detailed overview of I/O fundamentals, bus communica-
tion and protocols, and typical external storage devices, such as magnetic and
optical disks, as well as the various formats available for each. DMA, pro-
grammed I/O, and interrupts are covered as well. In addition, various techniques
for exchanging information between devices are introduced. RAID architectures
are covered in detail, and various data compression formats are introduced.

¢ Chapter 8 discusses the various programming tools available (such as compil-
ers and assemblers) and their relationship to the architecture of the machine on
which they are run. The goal of this chapter is to tie the programmer’s view of
a computer system with the actual hardware and architecture of the underlying
machine. In addition, operating systems are introduced, but only covered in as
much detail as applies to the architecture and organization of a system (such as
resource use and protection, traps and interrupts, and various other services).

* Chapter 9 provides an overview of alternative architectures that have emerged
in recent years. RISC, Flynn’s Taxonomy, parallel processors, instruction-level
parallelism, multiprocessors, interconnection networks, shared memory sys-
tems, cache coherence, memory models, superscalar machines, neural net-
works, systolic architectures, dataflow computers, and distributed architectures
are covered. Our main objective in this chapter is to help the reader realize we
are not limited to the von Neumann architecture, and to force the reader to con-
sider performance issues, setting the stage for the next chapter.

* Chapter 10 addresses various performance analysis and management issues.
The necessary mathematical preliminaries are introduced, followed by a dis-
cussion of MIPS, FLOPS, benchmarking, and various optimization issues with
which a computer scientist should be familiar, including branch prediction,
speculative execution, and loop optimization.
Chapter 11 focuses on network organization and architecture, including net-
work components and protocols. The OSI model and TCP/IP suite are intro-
duced in the context of the Internet. This chapter is by no means intended to be

comprehensive. The main objective is to put computer architecture in the cor-
rect context relative to network architecture.

An appendix on data structures is provided for those situations where students may
need a brief introduction or review of such topics as stacks, queues, and linked lists.

xvi Preface

Chapter 1: introduction

A 4 Y
Chapter 2: Chapter 3:
Data Representation Boolean Algebra and
Digital Logic

—

Chapter 4: MARIE, a
Simple Computer

v

Chapter 5: A closer
Look at iSAs

[
v v

Chapter 6: Chapter 7:
Memory Input/Output

| ‘

v v

Chapter 8: Chapter 11:
System Software Network Organization

A A A
Chapter 9: Altemative Chapter 10
Architectures Performance

FIGURE P.1 Prerequisite Relationship Among Chapters

The sequencing of the chapters is such that they can be taught in the given
numerical order. However, an instructor can modify the order to better fit a given

curriculum if necessary. Figure P.1 shows the prerequisite relationships that exist
between various chapters.

Intended Audience

This book was originally written for an undergraduate class in computer organi-
zation and architecture for computer science majors. Although specifically
directed toward computer science majors, the book does not preclude its use by
IS and IT majors.

This book contains more than sufficient material for a typical one-semester
(14 week, 42 lecture hours) course; however, all of the material in the book can-
not be mastered by the average student in a one-semester class. If the instructor

