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Preface

This book on iterative methods for linear and nonlinear equations can be used
as a tutorial and a reference by anyone who needs to solve nonlinear systems
of equations or large linear systems. It may also be used as a textbook for
introductory courses in nonlinear equations or iterative methods or as source
material for an introductory course in numerical analysis at the graduate level.
We assume that the reader is familiar with elementary numerical analysis,
linear algebra, and the central ideas of direct methods for the numerical
solution of dense linear systems as described in standard texts such as [7],
[105], or [184].

Our approach is to focus on a small number of methods and treat them
in depth. Though this book is written in a finite-dimensional setting, we
have selected for coverage mostly algorithms and methods of analysis which
extend directly to the infinite-dimensional case and whose convergence can be
thoroughly analyzed. For example, the matrix-free formulation and analysis for
GMRES and conjugate gradient is almost unchanged in an infinite-dimensional
setting. The analysis of Broyden’s method presented in Chapter 7 and
the implementations presented in Chapters 7 and 8 are different from the
classical ones and also extend directly to an infinite-dimensional setting. The
computational examples and exercises focus on discretizations of infinite-
dimensional problems such as integral and differential equations.

We present a limited number of computational examples. These examples
are intended to provide results that can be used to validate the reader’s own
implementations and to give a sense of how the algorithms perform. The
examples are not designed to give a complete picture of performance or to be
a suite of test problems.

The computational examples in this book were done with MATLABg
(version 4.0a on various SUN SPARCstations and version 4.1 on an Apple
Macintosh Powerbook 180) and the MATLAB environment is an excellent one
for getting experience with the algorithms, for doing the exercises, and for
small-to-medium scale production work.! MATLAB codes for many of the
algorithms are available by anonymous ftp. A good introduction to the latest

T TMATLAB isa registered trademark of The MathWorks. Inc.

xi
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version (version 4.2) of MATLAB is the MATLAB Primer [178]; [43] is also
a useful resource. If the reader has no access to MATLAB or will be solving
very large problems, the general algorithmic descriptions or even the MATLAB
codes can easily be translated to another language.

Parts of this book are based upon work supported by the National
Science Foundation and the Air Force Office of Scientific Research over
several years, most recently under National Science Foundation Grant Nos.
DMS-9024622 and DMS-9321938. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation or of the Air
Force Office of Scientific Research.

Many of my students and colleagues discussed various aspects of this
project with me and provided important corrections, ideas, suggestions, and
pointers to the literature. I am especially indebted to Jim Banoczi, Jeff
Butera, Steve Campbell, Tony Choi, Moody Chu, Andreas Griewank, Laura
Helfrich, Ilse Ipsen, Vickie Kearn, Debbie Lockhart, Carl Meyer, Casey Miller,
Ekkehard Sachs, Jeff Scroggs, Mike Tocci, Homer Walker, Steve Wright,
Zhaqging Xue, Yue Zhang, and an anonymous reviewer for their contributions
and encouragement.

Most importantly, I thank Chung-Wei Ng and my parents for over one
hundred years of patience and support.

C. T. Kelley
Raleigh, North Carolina
January, 1995



How to get the software

A collection of MATLAB codes has been written to accompany this book. The
MATLAB codes can be obtained by anonymous ftp from the MathWorks server
ftp.mathworks.com in the directory pub/books/kelley, from the MathWorks
World Wide Web site,
http://www.mathworks.com
or from SIAM’s World Wide Web site
http://www.siam.org/books/kelley/kelley.html
One can obtain MATLAB from
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760,
Phone: (508) 653-1415
Fax: (508) 653-2997
E-mail: info@mathworks.com
WWW: http://www.mathworks.com
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Chapter 1

Basic Concepts and Stationary Iterative Methods

1.1. Review and notation
We begin by setting notation and reviewing some ideas from numerical linear
algebra that we expect the reader to be familiar with. An excellent reference
for the basic ideas of numerical linear algebra and direct methods for linear
equations is [184].

We will write linear equations as
(1.1) Ar =b.
where A is a nonsingular N x N matrix, b € RV is given, and

o =A4""e RN

is to be found.

Throughout this chapter & will denote a potential solution and {xk }r>0 the
sequence of iterates. We will denote the ith component of a vector z by (x);

(note the parentheses) and the ith component of x; by (xk)i- We will rarely
need to refer to individual components of vectors.

[n this chapter || || will denote a norm on RN as well as the induced matriz
norm.
DEFINITION 1.1.1. Let || - || be a norm on RV The induced matrix norm

of an N x N matrix A is defined by

Al = puax || Azl}.

Induced norms have the important property that
IAz] < [|Al{|=]-
Recall that the condition number of A relative to the norm || - || is
K(A) = | AllIATY),
where r(A4) is understood to be infinite if 4 is singular. If II - I is the I norm

t/p

N
lelly = { D 1)l
j=1

3



4 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

we will write the condition number as x,.
Most iterative methods terminate when the residual

r==5b- Ax
is sufficiently small. One termination criterion is

|74l
lI7oll

(1.2) <7

which can be related to the error

in terms of the condition number.
LEMMA 1.1.1. Let b,xr,z9 € RN. Let A be nonsingular and let ©* = A~ 1.

, llell il
1.3 — < k(A4
(15) jeoll = ““Dlirell
Proof. Since
r=b-— Axr = —Ae

we have

llefl = {1A™" Ael] < | A" ||| Aell = [ A~ f]ir]

and
liroll = [l Aeol| < ||Alllleol|-

Hence
lell o Al

ol
leoll < TAT ol = )

lIroll”

as asserted. 0

The termination criterion (1.2) depends on the initial iterate and may result
in unnecessary work when the initial iterate is good and a poor result when the
initial iterate is far from the solution. For this reason we prefer to terminate
the iteration when

NIl
(1.4) Hb” <T

The two conditions (1.2) and (1.4) are the same when zy = 0, which is a
comunon choice, particularly when the linear iteration is being used as part of
a nonlinear solver.
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1.2. The Banach Lemma and approximate inverses

The most straightforward approach to an iterative solution of a linear system
is to rewrite (1.1) as a linear fixed-point iteration. One way to do this is to
write Ax = b as

(1.5) z=(—-A)x+b,

and to define the Richardson iteration
(1.6) Ty = (I — A)xzp + b.

We will discuss more general methods in which {z;} is given by
(1.7) Tryy = Mz + .

In (1.7) Al is an N x N matrix called the iteration matriz. Iterative methods of
this form are called stationary iterative methods because the transition from Ty
to ry4) does not depend on the history of the iteration. The Krylov methods
discussed in Chapters 2 and 3 are not stationary iterative methods.

All our results are based on the following lemma.

LEMMA 1.2.1. If M is an N x N matriz with IM|| <1 then I — M is
nonsingular and

(1.8) (= A=t < —2

1-|M|
Proof. We will show that T — M is nonsingular and that (1.8) holds by
showing that the series
o
Y M =(1- M)t
=0

The partial sums
k.
Sy =Y A
(=0

form a Cauchy sequence in RNV Tq see this note that for all m > k

m

ISk = Smll < 3 (1.

I=k+1

Now., |[|M']| < ||M]|' because |- Il is an matrix norm that is induced by a vector
norm. Hence

~ e 1 — “A,I”m—k
”‘Sl\ - Srn“ S ”AI”I — ”A[”k+] (h—*h =0
1:1\2‘21 1 - ||M||

as m.k — oc. Hence the sequence Sj converges, say to S. Since M Sy + I =
Sk41 , we must have MS + I = S and hence (I — M)S = I. This proves that
I — M is nonsingular and that S = (I-M)"L
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Noting that
I = M) < D IMYE = (= (i)
=0

proves (1.8) and completes the proof. 0

The following corollary is a direct consequence of Lemma 1.2.1.

CoRroLLARY 1.2.1. If |[M|| < 1 then the iteration (1.7) converges to
x = (I — M)~ !¢ for all initial iterates xq.

A consequence of Corollary 1.2.1 is that Richardson iteration (1.6) will
converge if ||[I — A]] < 1. It is sometimes possible to precondition a linear
equation by multiplying both sides of (1.1) by a matrix B

BAx = Bb

so that convergence of iterative methods is improved. In the context of
Richardson iteration, the matrices B that allow us to apply the Banach lemma
and its corollary are called approzimate inverses.
DEFINITION 1.2.1. B is an approximate inverse of A if ||I — BA|| < 1.
The following theorem is often referred to as the Banach Lemma.
THEOREM 1.2.1. If A and B are N x N matrices and B is an approrimate
inverse of A. Then A and B are both nonsingular and

- 1Bl - Al
19 A< e BTN S T Eay
and
» I BJIjlT — BA| —1y o JAINT = BA|
(1.10) ][A™" = B| < W-————B—;‘Tﬂ’ lA—B7Y < mﬂ

Proof. Let M =1 -~ BA. By Lemma 1211 -M =1—- (I - BA)=BAis
nonsingular. Hence both A and B are nonsingular. By (1.8)

1 1
1M~ 1T - BA[’

(L1 JATIBTY = (I - M) <

Since A~! = (I — M)~!B, inequality (1.11) implies the first part of (1.9). The
second part follows in a similar way from B~! = A(] — M)~L.
To complete the proof note that

A" - B=(1-BA)A ', A- B! = B~Y(I — BA),

and use (1.9). 0O
Richardson iteration, preconditioned with approximate inversion, has the
form

(1.12) Tk4+1 = (I — BA)zy + Bb.

If the norm of I — BA is small, then not only will the iteration converge
rapidly, but, as Lemma 1.1.1 indicates, termination decisions based on the
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preconditioned residual Bb — BAx will better reflect the actual error. This
method is a very effective technique for solving differential equations, integral
equations, and related problems [15], [6], [100], [117], [111]. Multigrid methods
[19], [99], [126], can also be interpreted in this light. We mention one other
approach, polynomial preconditioning, which tries to approximate A~! by a
polynomial in A [123], [179], [169].

1.3. The spectral radius

The analysis in § 1.2 related convergence of the iteration (1.7) to the norm of
the matrix M. However the norm of M could be small in some norms and
quite large in others. Hence the performance of the iteration is not completely
described by ||M||. The concept of spectral radius allows us to make a complete
description.

We let (A) denote the set of eigenvalues of A.

DerINITION 1.3.1. The spectral radius of an N x N matriz A is

1.13 A) = Al = lim [|A™|"/".
(1.13) p(A) = max [\ = lim A"

The term on the right-hand side of the second equality in (1.13) is the limit
used by the radical test for convergence of the series 3 A™.

The spectral radius of M is independent of any particular matrix norm of
M. It is clear, in fact, that
(1.14) p(A) < ||A]

for anv induced matrix norm. The inequality (1.14) has a partial converse that
allows us to completely describe the performance of iteration (1.7) in terms of
spectral radius. We state that converse as a theorem and refer to [105] for a
proof.

THEOREM 1.3.1. Let A be an N x N matriz. Then for any € > 0 there is
a norm || - || on RN such that

p(A) > [ A] - e

A consequence of Theorem 1.3.1, Lemma 1.2.1, and Exercise 1.5.1 is a
characterization of convergent stationary iterative methods. The proof is left
as an exercise.

THEOREM 1.3.2. Let M be an N x N matriz. The iteration (1.7) converges
Jor all c € RN if and only if p(M) < 1.

1.4. Matrix splittings and classical stationary iterative methods

There are ways to convert Ar = b to a linear fixed-point iteration that are
different from (1.5). Methods such as Jacobi, Gauss-Seidel, and sucessive
overrelaxation (SOR) iteration are based on splittings of A of the form

A=A, + A,



8 ITERATIVE METHODS FOR LINEAR AND NONLINEAR EQUATIONS

where A; is a nonsingular matrix constructed so that equations with A; as
coefficient matrix are easy to solve. Then Az = b is converted to the fixed-

point problem
z = A7 (b~ Azz).

The analysis of the method is based on an estimation of the spectral radius of
the iteration matrix M = —A]!A,.

For a detailed description of the classical stationary iterative methods the
reader may consult [89], [105], {144], [193], or [200]. These methods are usnally
less efficient than the Krylov methods discussed in Chapters 2 and 3 or the more
modern stationary methods based on multigrid ideas. However the classical
methods have a role as preconditioners. The limited description in this section
is intended as a review that will set some notation to be used later.

As a first example we consider the Jacobi iteration that uses the splitting

Ay =D,Ay =L+,

where D is the diagonal of A and L and U are the (strict) lower and upper
triangular parts. This leads to the iteration matrix

Mjac = ~D YL+ ).

Letting (zx); denote the ith component of the kth iterate we can express Jacobi
iteration concretely as

(1.15) (Tks1)i = aj;’! (bi - Zaij(xk)j) .
j#i

Note that A, is diagonal and hence trivial to invert.

We present only one convergence result for the classical stationary iterative
methods.

THEOREM 1.4.1. Let A be an N x N matriz and assume that for all
1<i<N
(1.16) 0< Z la,-j] < |aiil.

J#i

Then A is nonsingular and the Jacobi iteration (1.15) converges to x* = A~ b
for all b.

Proof. Note that the ith row sum of M = M, satisfies

N
5" gl - Sl
i lasi|

Hence ||Mjacllec < 1 and the iteration converges to the unique solution of
£ = Mz + D7 'b. Also I — M = D7 'A is nonsingular and therefore A is
nonsingular. 0



