| Davis, Qlson, and Litecky
ELEMENTARY
STRUCTURED

COBOL

A Step by Step Approach

ELEMENTARY
STRUCTURED

COBOL

A Step by Step Approach

Gordon B. Davis
Professor, Management Information Systems

University of Minnesota

Margrethe H. Olson
Assistant Professor, Computer Applications and Information Systems
New York University

Charles R. Litecky

Associate Professor, Accountj
University of Missouri, Colu

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotd Disseldorf
lohannesburg London Madrid Mexico Montreal New Delhi
Panama Paris S&o Paulo Singapore Sydney Tokyo Toronto

ELEMENTARY STRUCTURED COBOL
A Step by Step Approach

Copyright ©) 1977 by McGraw-Hill, Inc. All rights reserved.

Formerly published under the title of ELEMENTARY COBOL PROGRAMMING:
A Step by Step Approach, copyright © 1971 by McGraw-Hill. Inc. All rights
reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted. in any form

or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

1011121314 SMSM 8987654

This book was set in Plantin by York Graphic Services, Inc. The editors were
Peter D. Nalle, Matthew Cabhill, and Theresa |. Kwiatkowski; the cover was de-
signed by Joseph Gillians; the production supervisor was Robert C. Pedersen.
The drawings were done by J & R Services, Inc.

Semline, Inc., was printer and binder.

Library of Congress Cataloging in Publication Data

Davis, Gordon Bitter.
Elementary structured COBOL.

Originally published in 1971 under title: Elementary
COBOL programming.

1. COBOL (Computer program language) |. Olson,
Margrethe H., joint author. i, Litecky, Charles R.,
joint author. Il Title.
QA76.73.C25D38 1977 001.6'424 76-57721
ISBN 0-07-015782-0

PREFACE

This text was written in response to several needs that we and others have experienced in
teaching the COBOL language to college students. We felt the need for a COBOL text that
would:

Adhere to the new 1974 COBOL standard

Present COBOL in the context of structured programming practice

Apply to both self-instructional and regular lecture-method instruction

Use student programs both for motivation and for teaching good programming practice
Provide an introduction to COBQL for students not desiring COBOL proficiency or depth of
COBOL knowledge while providing a solid foundation for those intending to be engaged in
programming in COBOL

b wnNn =

We have found no existing COBOL texts which meet these criteria, and therefore this text was
written. it has been class-tested with students having a variety of backgrounds—business school
undergraduates, liberal arts undergraduates, graduate students, evening students in nondegree
courses, and high school students. Some of the students have had previous programming
courses in FORTRAN or BASIC; others have had no background. The response from this
diverse group of students to the approach and content of the text has been most encouraging.

The text adheres to the 1974 COBOL standard. Most of the newer COBOL compilers will be
1974 standard. Where there is an older compiler, the text can still be used. An explanation of
differences is provided in Appendix C. This appendix will allow the student to write the
programs in the text in 1968 standard COBOL.

Programming that is done in a structured, disciplined manner is more productive and results in
programs that have fewer errors, are simpler to debug, and are more easily maintained than
programs written without this approach. This text does not simply teach the rules for COBOL; it
teaches the student by explanation and by example how to apply the rules of the COBOL
language to write clear, structured programs.

Many students are able to learn a programming language with little assistance; others require
lectures to reinforce the language text. In recognition of the need for both instructional
approaches, this text was written so that it may be used in a self-instructional mode without
lectures. This also makes it suitable for in-company training. When the lecture method is

vii

viii

PREFACE

preferred, the text is still well-suited because the organization of each topic chapter into an A
and B section facilitates lecture presentation. Section A presents language features which can
be amplified and illustrated in an accompanying lecture. Section B contains a sample program
and the programming exercises, one of which will normally be assigned. An instructor may wish
to use the sample program as the subject of a lecture, adding to the explanations on
programming.

A frequent complaint about COBOL books has been that the texts are designed so that a
student does not write programs until late in the study of the language. The result is a lack of
the motivation and learning that would come from writing, debugging, and executing programs.
This text has the student code and execute a simple but complete COBOL program in
connection with each chapter. The programs are used to help students clarify and solidify their
understanding of the chapter material. In Chapters 2 to 4, there are three problems at the end
of each chapter; the first two are similar in difficulty and follow the pattern of the example
program. The third problem is slightly more difficult. In Chapters 5 to 7, there are more
problems and the range of difficulty is defined in the problem section.

This COBOL text may be used alone as the major text in the study of COBOL, or it may be
used as the language text in a data processing course in which another, general text is used to
present basic material on computer hardware, software, and systems. Suggested companion
texts for the latter use are Davis, Computer Data Processing (New York: McGraw-Hill, 1973) or
Davis, Introduction to Computers in Information Processing, to be published by McGraw-Hill in
1978.

COBOL courses (and the students taking these courses) have differing learning objectives.
These range from “getting a feel for this important language” to learning to be a COBOL
programmer. The text is suitable for a wide range of objectives by selective use of part or all of
the material. An objective of introducing students to the elements of the COBOL language and
the structure of COBOL programs can be achieved by Chapters 1 to 4. Chapter 5 should be
included if students need to understand the logic of sequential file updating. Students who need
to understand the entire range of capabilities for the language should use all chapters.

A large number of students have provided feedback that has been incorporated in the text.
Graduate teaching assistants have provided ideas and pointed out sections in need of
improvement. Nancy Kelly Bostrom worked on most of the programs. Alison Davis and Stanley
Lau assisted in reviews and in writing sample solutions for the Instructor’s Guide. Janice
DeGross did an outstanding job of typing the manuscript.

We appreciate receiving suggestions for corrections or changes and ideas for additional
programming exercises from readers. Comments may be sent to Gordon B. Davis, College of
Business Administration, University of Minnesota, Minneapolis, Minnesota 55455.

Gordon B. Davis
Margrethe H. Olson
Charles R. Litecky

CONTENTS

Part 1
1A

1B
2A

2B

3A
3B

4A

4B

Part 2
5A
58

B6A
6B

TA
78

Preface

FUNDAMENTAL FEATURES OF COBOL

Introduction to Programming, Programming Discipline, and the
COBOL Language

A Card-Lister Program

instructions for Coding a Simple Program to Read, Move, and Print
Data

Bibliography-List Program plus Programming Exercises to Read,
Move, and Print Data

Instructions for Arithmetic Calculations and Writing a Report

An improved Bibliography-Report Program plus Programming
Exercises on Arithmetic Computations and Printing a Report

Additional Features for Input-Output, IF ... ELSE Selection
Coding, and the COMPUTE Verb

A Book-Order-List Program plus Student Programming Exercises

ADDITIONAL FEATURES OF COBOL
The COPY Statement and Sequential File Updating

A Sequential-File Update Program and Sequential-File Update
Exercises

List and Tabte Handling

A Pay-Rate Control-Report Program plus Student Programming
Exercises for Table Handling Using Subscripts and Indexes

Advanced File Processing, String Processing, and Other Features

Example Programs and Programming Exercises Using Relative and
indexed Files, String Processing, and Sort

vii

26

37

70
81

109

119

143

157

172
188

209
223

256

vi

CONTENTS

8

Appendix A
Appendix B
Appendix C
Appendix D

Additional COBOL Features

COBOL Acknowledgment

How to Use the Card Punch

Differences between 1968 and 1974 Standard COBOL
Reference Formats for ANS Standard COBOL

index

273

285
287
295
298

309

PART

FUNDAMENTAL
FEATURES
OF COBOL

The first four chapters (Part 1) present the basic
structure of a COBOL program and explain the
instructions for writing simple COBOL programs for
processing data and printing reports. Part 1 pro-
vides a good introduction to the nature of program-
ming in COBOL and a foundation for the additional
features explained in Part 2. The topics covered
are:

Chapter Topic

1A Introduction to programming, programming
discipline, and the COBOL language

2A Instructions for coding a simple program to
read, move, and print data

3A Instructions for doing arithmetic calculations
and writing a report

4A Additional features for input and output, IF

... ELSE coding, and the COMPUTE verb

The text helps a student to learn COBOL by
explaining how to write programs using specified
COBOL instructions. The general explanation con-
tained in section A of each chapter is followed by a
sample program in section B. The four sample pro-
grams for Chapters 1 to 4 illustrate the COBOL
features covered in Part 1:

Chapter Sample program

1B Card-lister program

2B Bibliography-list program

3B Improved bibliography-report program
4B Book-order-list program

Upon completion of Part 1, the student will be
able to write complete COBOL programs in good
form for problems involving reading from a file,
performing input-data-validation, performing proc-
essing on the data, and printing well-formatted out-
put for both regular reports and error reports.

CHAPTER Instructing a Computer

Hardware and Software
Machine-Level Languages
High-Level Languages

The COBOL Language
History of COBOL
An Evaluation of COBOL

Objectives of a Disciplined Approach to
Programming

Meeting User Needs

Development on Time within Budget
Error-free Set of instructions
Error-resistant Operation

INTRODUCTION | ponie. o
TO PROGRAMMING,
PROGRAMMING Tools and Conventions for Planning and Coding a
DISCIPLINE, | cosot Program
AND THE COBOL | o350l Codng Peper
LANGUAGE Conventions for Handprinting on Coding Sheets

Submitting a COBOL Program for Compilation and
Execution

The Program lob

The Qutput from Compilation

Detecting and Correcting Coding Errors

Modular Design of Programs

Completing the COBOL Program
Removing Logic Errors
Documentation

Summary

Chapter Vocabulary

Self-testing Exercises

Answers to Self-testing Exercises

%I

FUNDAMENTAL FEATURES OF COBOL

This chapter introduces the concept of a programming language, programming
discipline, the COBOL language, and procedures for submitting a program for
compilation and execution. A complete COBOL program is contained in section B of
the chapter. Using this example program as a guide, you will be able to code,
keypunch, and submit a COBOL program for processing. Section A of Chapter 1 thus
provides concepts necessary for understanding the nature of COBOL. programming,
and section B provides an introductory experience in preparing a COBOL program.
The program written as the assignment for section B is also used to provide experi-
ence in following the procedures by which a COBOL program is submitted to the
computer center and processed.

Instructing a Computer

Before starting the explanation of the COBOL language, it may be helpful to review
how a computer is instructed. A computer system requires both hardware and
software. The hardware consists of all the equipment; the software includes the
programs of instructions which direct the operations of the computer equipment.

Hardware and Software

A hardware computer system (Figure 1-1) has input units (such as card reader), a
central processor (CPU), and output units (such as printer). It also has secondary or

Disk storage units

Central processor

B

Card punch

Card reader

FIGURE 1-1 A computer system. lllustrations from IBM System/370 equipment (courtesy of
International Business Machines Corporation).

PROGRAMMING, PROGRAMMING DISCIPLINE, AND THE COBOL LANGUAGE

auxiliary storage devices such as magnetic-disk or magnetic-tape units. In a typical
processing job, data comes from the input unit (and perhaps from secondary storage)
into the central processor, where computation and other processing are performed.
After processing, the results are sent to the output device (say a printer) or to a
secondary storage device to be held for later output or further processing.

The hardware can perform operations such as read, write, add, etc., but the
sequence in which these operations are to be performed and the exact input and output
units o be used are specified by mnstructions stored in the computer memory. The
general term applied to these computer processing instructions is software. The
instructions are organized into sets called routines and programs. A routine refers 1o a
set of instructions which directs the performance of a specific processing task, such as
calculating the square root of a quantity or producing an error message when an error
is encountered in input data. A program consists of one or more routines which direct
a complete processing job.

There are several major types of software. Three types especially relevant to the
study of COBOL are application programs, operating systems, and compilers.

v Application programs Programs which direct processing of an application such as
preparation of a report, preparation of payroll checks, etc. The COBOL programs
in this text are application programs.

2 Operating system A set of routines which directs and manages the operations of
the computer. The operating system supports the running of application programs.
For example, if an application program has an instruction to read a card from the
card reader but the card reader is not operable, the operating system sends a
suitable message to the computer operator.

3 Compilers Compilers are programs which prepare machine-language programs
from programs written in a language such as COBOL.

Application programs may be written by programmers in the organization needing
them or purchased from vendors who have prepared programs for specific applica-
tions. Operating systems and compilers are generally obtained from the hardware
vendor, but independent software vendors are also a source. Programs which are being
executed arc stored in the main (primary) storage or memory, which is part of the
central processing unit (CPU). Programs not currently being executed which need to
be available are stored in secondary storage. Some parts of the operating system
remain in main storage all the time. According to job-control instructions to be
described later, these operating-system routines bring into main memory the routines
and programs to be executed and direct their execution. The programs to be run may
be compilers, application programs, or other software.

Machine-Level Languages

A program in main memory must be in machine language to be executed. A ma-
chine-language instruction is represented as a string of binary digits (bits), which
identify the operations to be performed and the data, etc., to be used. For example,

FUNDAMENTAL FEATURES OF COBOL

one instruction for the IBM System/370 has the following form (with 1 standing for
a 1 bit and O for a 0 bit in storage):

01011010001100001011101001000000

Even though the internal machine representation is in this form, it would be very
difficult and could lead to error if a programmer were required to deal with such
instructions. When machine instructions are printed for operator or programmer use,
a condensed notation is employed. For example, the preceding instruction would be
printed out for operator or programmer inspection as

5A 30BA40

Although easier than the machine representation, this notation is still difficult to
use. Therefore, if a program is to be written in machine-level instructions, the
programmer generally uses a symbolic assembly language. Machine-oriented, sym-
bolic assembly languages as a class are often referred to as low-level languages. The
preceding instruction coded in symbolic assembly language might be A 3,PAY
where, for example, A means “add.” Since the computer cannot execute the symbolic
instructions directly, they must be translated into machine-language instructions. This
is done by a program called a symbolic assembly system, which converts each symbolic
instruction into an equivalent machine-level code instruction. Machine-oriented
programming is very useful for some applications because coding can be very
machine-sensitive, thus giving very efficient use of the computer. However, an
assembly-language program is relatively difficult to code, and logic errors are difficult
to find. It is also difficult and time-consuming to change it. A program in a low-level,
machine-oriented language also has limited transferability (portability) from one
computer to another.

High-Level Languages

A high-level language is oriented to problem solution or processing procedures rather
than to the machine-level instructions of a particular computer. There are a number of
different high-level languages for different types of problems. Each of these languages
consists of a grammar (set of rules) and predefined words for writing instructions. A
compiler is used to translate the program written in the high-level language (the
source program) into machine-level instructions for the computer on which the
program is to be run (the object program). Since the compiler is a computer program,
there must be a unique compiler for each computer for which a high-level language
program is to be translated. In contrast to symbolic assembly language, in which one
symbolic instruction is converted into one machine instruction, a high-level language
instruction statement is generally translated into a number of machine-language
instructions.

There are two important advantages of high-level languages over symbolic
assembly languages: they are machine-independent in the sense that they can be
compiled and run on any computer (for which there is a compiler) with little or no
change, and they are relatively easy to learn. Today, these languages are generally so

PROGRAMMING, PROGRAMMING DISCIPLINE, AND THE COBOL LANGUAGE

powerful and efficient that they have virtually eliminated the need for symbolic-
assembly-language coding except for a few specialized applications. It is also relatively
easy to standardize methods of coding with high-level languages. Organizations
having a concern for program accuracy and a desire for programming discipline have
strongly influenced the trend toward use of high-level languages.

The two most common procedure-oriented high-level languages are FORTRAN
and COBOL. FORTRAN is best suited for formula-type mathematical problems,
while COBOL is by far the dominant language in use today in business data process-
ing. It is estimated that more than 70 percent of all programs for business use are
written in COBOL.

The COBOL Language

COBOL (an acronym for common business-oriented Janguage) is a high-level proce-
dure-oriented language designed for coding organizational data processing applica-
tions. These types of applications are characterized by the use of large files, a high
volume of input and output, and production of reports requiring editing and format-
ting of output data. COBOL is an English-like language; its vocabulary and grammar
are based upon the clause, sentence, paragraph, and word order of the English
language. COBOL is nonmathematical, in contrast to other programming languages,
like FORTRAN, which are based upon algebraic, symbolic, or algorithmic notations.
One can write the procedures for mathematical computation in COBOL, but other
more convenient languages are for this purpose.

History of COBOL

Work on a common source language suitable to commercial (as opposed to scientific)
data processing began in 1959, when several large business organizations, the federal
government, computer manufacturers, and other interested parties formed a commit-
tee to develop the language. The committee (named CODASYL for Conference on
Data Systems Languages) developed the specifications for a language called COBOL
(see acknowledgment in Appendix A). Their report, issued in April 1960, contained
the first version of COBOL, termed COBOL-60. CODASYL formed a maintenance
committee to initiate and review recommended changes to keep COBOL up to date.
Subsequent revisions were published in 1961 (COBOL-61), 1963 (COBOL-61
Extended), and 1965 (COBOL, Edition 1965). Changes subsequent to the 1965
version have been published in reports titled The COBOL Journal of Development.

Although COBOL was developed and is maintained by CODASYL, it has also
been established as a standard language by the American National Standards Institute
(ANSI).! The suppliers of COBOL compilers generally base them on the American
National Standard COBOL. An initial standard, issued in 1968, was revised in 1974.
The American National Standard COBOL recognizes different levels (of complexity)
of COBOL implementation and provides standards for each. The idea is that a small
computer may not have memory enough to be able to implement all the COBOL

'USA Standard COBOL, X3.23-1974, American National Standards Institute, New York, 1974.

FUNDAMENTAL FEATURES OF COBOL

features, but it can implement the more fundamental ones. The basic COBOL
language elements are termed the nucleus of the language. The nucleus is divided into
nucleus, level 1 (low level) and nucleus, level 2 (high level), with level 2 including all
elements of the COBOL nucleus and level 1 being a restricted version with some
features not required. The same division into levels of implementation is followed for
other groupings of COBOL features covering specific processing techniques. These
groupings (called functional modules) will be explained in Chapter 8.

The COBOL chapters in this text are based on the 1974 ANS COBOL standard,
the newest standard version in use at the writing of this text. If the compiler used by
a student adheres to the older 1968 ANS standard and has not been updated for the
1974 standard, a few language features described in the text will not be accepted. The
text can still be used by making adjustments for the differences. Appendix C describes
the differences.

The problems in Part 1 of this text generally use only features contained in the
ANS COBOL standard low-level nucleus (level 1). Exceptions are noted in the text
and listed in the summary at the end of the chapter.

An Evaluation of COBOL

Why do organizations adopt COBOL as the major data processing language? The
reasons suggest why a student should study COBOL in preference to other data
processing languages. COBOL has a number of advantages and, like all languages,
some disadvantages. Some advantages are:

1 Wide use Since COBOL is the major data processing language, many program-
mers know it, it is well supported by training materials, etc. It has broad support
by industry and government users, and all computer manufacturers provide
COBOL compilers.

2 Documentation support COBOL contains excellent features for self-documenta-
tion of programs. English-like sentences make the program fairly understandable.

3 Portability COBOL is sufficiently machine-independent to cross computer
system lines. Programs compiled and run on the machine of one manufacturer can,
with relatively minor modifications, be compiled and run on a computer of another
manufacturer,

4 Standardization There is an accepted standard COBOL which is supported by
the American National Standards Institute.

5 Growth in response to new requirements There are regular provisions for adding
features to COBOL.

6 Programming discipline support COBOL supports the adoption and enforcement
of programming standards for effective programming management. COBOL has
a block structure suited to the application of principles of modularity, which are
important in programming discipline.

7 Data-handling capabilities COBOL offers strong capabilities in the areas of data
editing and file management.

PROGRAMMING, PROGRAMMING DISCIPLINE, AND THE COBOL LANGUAGE

8 Program modifiability The structure of a COBOL program which defines data in
a separate part of the program means that the program can easily be modified to
accommodate changes in data being processed.

Given these advantages and wide acceptance by organizations, why isn’t COBOL
taught more widely in the college classroom? Some disadvantages of COBOL provide
possible answers to this question.

1 Verbositv Due to its self-documenting features, COBOL is wordy. With this
language the student must spend more time coding and keypunching programs
than with algebraic languages.

2 Lumited scope COBOL is not a universal language for all kinds of processing. It
lacks extensive scientific and mathematical facilities often needed for student

course problems. Such features are provided in algebraic languages such as
FORTRAN.

3 For professional programmers COBOL was designed for the professional pro-
grammer. It is therefore difficult to use COBOL without knowing a considerable
part of the language.

Of the disadvantages of COBOL, the need to learn or know a great deal of the
language in order to write and run simple programs has most significantly limited the
use of COBOL in the classroom. The approach used in this text overcomes these
disadvantages of size and complexity by presenting first only enough features to write
a simple program and by then adding features with each chapter. The important,
frequently used features are explained in detail; little used features are surveyed.

Objectives of a Disciplined Approach to Programming

Computer programs frequently do not meet user requirements, are not produced on
time, cost considerably more than estimated, contain errors, and are difficult to
maintain (to correct or change to meet new requirements). These difficulties have been
observed with such frequency that many organizations have attempted to change the
practice of programming to improve performance. The revised approach can be
termed programming discipline, that is, well-defined practices, procedures, and devel-
opment control processes.

It is apparent from its success in industry that a disciplined approach to program
design and development will lead to improved programming performance. The
problems in this book have been designed using this approach. The technique of
structured programming, one important aspect of programming discipline, will be the
basis on which the student is taught to program in COBOL. Because of this approach,
the student will be introduced to the elements of the COBOL language in a teaching
procedure that is significantly different from that of traditional COBOL texts. The
idea 1s that the student should learn the elements of programming discipline and
structured programming while learning the language. The disciplined, structured
approach is useful both for those who wish only an introduction to COBOL and for

10

FUNDAMENTAL FEATURES OF COBOL

those who expect to become COBOL programmers. It is not sufficient to merely learn
coding rules for COBOL,; it is equally important to learn how these features are
combined into a high-quality program.

Because programming discipline is an underlying principle for this text, and
because programming discipline is important to industry, it will be useful to summa-
rize the major objectives of a disciplined, structured approach to programming. These
objectives are:

1 Meeting user needs

Development on time within budget
Error-free set of instructions
Error-resistant operation

Maintainable code

D A WN

Portable code

Meeting User Needs

A program has a purpose—to produce a report, prepare a sales invoice, or compute a
set of statistics. An assignment to prepare a program is a failure if the program is not
used because the potential users of the application find it too complex or too
difficult. A disciplined approach to program design includes a careful analysis of user
needs and user involvement in key decisions affecting application usability.

Development on Time within Budget

Estimates of time and cost for writing computer programs have frequently been
substantially in error. Programmer productivity has generally been lower than
expected. Three requirements of a structured, disciplined approach to programming
for meeting this on-time objective are:

1 More accurate estimates
2 Greater programmer productivity

3 Closer control of the actual time and cost required

Industry average productivity (in 1975) was about 8 lines of tested code per day
for a programmer using a high-level language such as COBOL (about 2000 lines per
year). Using a more structured, disciplined approach, installations have achieved
dramatic improvements in productivity. For example, one installation boosted pro-
ductivity to 5000 lines per year, and another expects to achieve an average of 10,000
lines of tested code per programmer per year.

Error-free Set of Instructions

It is generally conceded that all large-scale computer programs contain errors, and it
may be impossible to remove every single error from a large set of programs.
However, when a disciplined, structured approach is used, programs can be designed

