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1.1 Introduction

The world’s energy demand is expected to increase significantly in the coming
years as a result of the exponential economic growth of emerging countries,
BRIC (Brazil, Russia, India, and China). Such an increased energy request
is closely associated with environmental concerns and deficiency in water
supply. These key challenges should be addressed by creating and maintaining
conditions that allow humans and nature to exist in productive harmony. Only
such a sustainable direction will permit fulfilling the social, environmental, and
economic requirements of present and future generations and avoid the world
passing the point of no return [1].

Chemistry has always played a pivotal role in development of societies by
improving the quality of life, the lifespan, and so on. However, despite its many
important progresses, chemistry is often recognized more as a problem than
as the solution to our daily needs. Indeed, the task of changing the persisting
vision that society and governments uphold about chemistry is one of the
biggest challenges of chemists for the 21st century; this challenge should
start from the design and development of benign and efficient manufacture
protocols. To improve chemical production efficiency and fulfill international
legislation, a multidisciplinary approach aimed at reducing by-products/waste,
optimizing energy utilization, controlling emissions (climatic change), and using
renewable materials to avoid hazardous or toxic substances is mandatory. In
this connection, the “Green Chemistry” concept, being a list of 12 principles, is
one of the most exciting, innovative, and realistic approaches that has emerged
in order to minimize the drawbacks of chemical processing and contribute to
the protection of the environment [2]. “Green Chemistry” advocates increas-
ing research on new renewable feedstocks, environmentally benign solvents
(preferably water), catalysis, and greener technologies, processes, and products.
Among the “Green Chemistry” principles, the ninth, focused on catalysis, plays

Sustainable Catalysis: Energy-Efficient Reactions and Applications,
First Edition. Edited by Rafael Luque and Frank Leung-Yuk Lam.
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a key role in certifying the world’s sustainability by improving processes in the
chemical industry, making them more efficient and benign. The development
of greener catalytic protocols through the rational design of new catalysts, both
homogeneous and heterogeneous, as well as solvent choice is important as it will
increase valuation and understanding at the government level and in society.

A “catalyst” is a substance that increases the rate at which a chemical reaction
proceeds without itself becoming permanently involved. There are many funda-
mental parameters in a chemical reaction that can be controlled by selecting the
appropriate catalyst, including, for example, energy consumption, selectivity,
productivity, and atom economy. Accordingly, the development of new catalysts
or catalytic systems can be considered as an important step toward establishing a
more green and sustainable chemical industry. In this regard, the design of more
effective catalysts and catalytic protocols that allow a chemical process to be
carried out at room temperature is a highly beneficial way to minimize both the
energy demand and the risk (minimizing safety issues) for employees of a chem-
ical plant. Furthermore, by decreasing the reaction temperature, the selectivity
toward the desired product normally increases, thereby minimizing undesired
side reactions and by-products. On the other hand, the reaction kinetics can be
significantly hampered at room temperature and the catalyst should therefore
be selected carefully to provide a system having a sufficiently low activation
energy that allows the reaction to proceed at an acceptable rate without auxiliary
energy input. Such selected catalysts for room-temperature reaction protocols
can be both homogeneous (e.g., organometallic complexes, ionic liquids) and
heterogeneous (e.g., metal nanoparticles, supported nanoparticles). Recently,
excellent reviews by Lam and Luque have covered this topic in detail [3].

The aim of this chapter is to provide an overview and point out some of the
most relevant catalytic systems that allow carrying out catalytic reactions at
room temperature. The catalytic systems will be divided in two main groups
depending on the nature of the catalyst involved, namely, (i) ionic liquids and
(ii) homogeneous and heterogeneous catalyst-containing transition metals from
groups 9 to 11 of the periodic table.

1.2 Room-Temperature Homogeneous Catalysts

Homogeneous catalysts are often superior to heterogeneous ones in terms
of activity and, in particular, selectivity. In addition, the reaction conditions
(temperature, pressure, etc.) are usually milder. However, homogeneous catalysis
is hampered by other important issues from an industrial or applicability point
of view, such as catalyst recovery and recyclability.

1.2.1 lonic-Liquid-Based Catalytic Systems at Room Temperature

lonic liquids are defined as salts only composed of ions, which melt with-
out being decomposed. A special group of ionic liquids are the so-called
room-temperature ionic liquids, which are liquid below 100 °C. The first known
ionic liquid (ethanolammonium nitrate) was reported in 1888 by Gabriel and
Weiner [4]. Later in 1914, Walden reported the synthesis of other ionic liquids
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Figure 1.1 Brgnsted acidic ionic liquids (BAILs) used as catalyst in the synthesis of
a-aminophosphonates in a one-pot, three-component reaction. (Adapted with permission
from Ref. [8]. Copyright (2014) Wiley.)

such as, for example, ethylammonium nitrate [5], but it was only in 1943 that
the term “ionic liquid” was coined by Barrer [6]. In the 1970s to the 1990s, novel
ionic liquids were developed and studied by US military researchers to be applied
mainly as electrolytes in batteries [7]. In the past 15 years, ionic liquids have
become of great importance for scientists due to their unique properties, mainly
their low vapor pressure, solubility, easy functionalization (task-specific ionic
liquids), and their successful applications in catalysis, nanoparticle stabilization,
electrochemistry, medicine, analytical methods, benign reaction media, and so
on. One main advantage of ionic liquids is the huge pool available. In principle,
this allows the possibility of selecting just the right ionic liquid for a specific
application. In catalysis, the selection of the ionic liquid is determined mainly
by solubility characteristics (providing often biphasic systems that allow the
recovery of the employed catalyst), intrinsic catalytic properties, as well as
their thermal and chemical stability. Here, we overview some reactions that
are conducted at room temperature in the presence of ionic liquids as catalyst
and/or reaction media.

An important subgroup of ionic liquids are the so-called acidic ionic liquids,
where a Bronsted or Lewis acid functionality is part of the ionic liquid ions.
They have been used to replace traditional mineral acids (MeSO;H, H,SO,, HF)
or traditional Lewis acids (AICl,, FeCl,) successfully and, often, with superior
performance. In organic synthesis, the acidic ionic liquids have been extensively
used and numerous reports have come out in the past years concerning their use
as solvents or catalysts at room temperature. Since it is not possible to survey
all these applications, representative examples will be pointed out to show the
potential of the acidic ionic liquids in organic synthesis.

a-Aminophosphonates are compounds of great interest due to their bio-
logical and chemical applications (antibacterial, antitumor, antiviral, enzyme
inhibitors). The synthesis of these compounds is normally carried out through
the so-called Kabachnik—Fields reaction in the presence of a dehydrating agent
and a Lewis acid. In 2009, Akbari and Heydari used a Brensted acidic ionic
liquid (BAIL) (Figure 1.1a) as catalyst instead of the Lewis acid for the synthesis
of a-aminophosphonates through a one-pot, three-component (phosphite,

3
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aldehyde or ketone, and amine) reaction [9]. They got excellent results in terms
of yield (up to 98%) in short reaction times at room temperature. Furthermore,
the employed BAIL catalyst could be recovered and reused up to six times
without any deactivation. In 2010, Fang et al. prepared a series of “halogen-free”
BAILs to be tested as catalysts in the same reaction and obtained good results
at room temperature in aqueous media [10]. In 2014, Peng et al. prepared a
different BAIL based on the choline cation (Figure 1.1b), also to be used as
catalyst in the same one-pot, three-component reaction. They claimed that
their synthesized choline-based BAIL was cheaper and less toxic than the one
previously reported by Akbari and Heydari [9]. Excellent results were obtained
under solvent-free conditions at room temperature in short time reactions with
isolated yields up to 95%. The recyclability of the catalyst was also tested up to
six times without any decrease in activity or degradation of the BAIL [8].

In a recent work, Ying et al. [11] showed the effectiveness in terms of
activity and recyclability of using multiple-acidic ionic liquids as catalysts for
the synthesis of a-aminophosphonates at room temperature under solvent-free
conditions. The same authors used the multiple-acidic ionic liquids in the
synthesis of bis-indolylmethanes (Figure 1.2), compounds with biological
activity and of great interest in the medical chemistry, under solvent-free
conditions and at room temperature. Among the applied multiple-acidic ionic
liquids, [TEOA]J[HSO,] (triethanolammonium hydrogensulfate) showed the
best performance, giving the products in excellent yield (up to 90%) after a few
minutes of reaction. In addition, the catalytic system was reused up to five times
without showing any sign of deactivation [12].

The protection of hydroxyl groups is an essential task in organic synthesis to
avoid unwanted reactions where, for example, Grignard or alkyllithium reagents
are involved. In this connection, acidic ionic liquids have shown to be alterna-
tives to commonly used volatile organic solvents in the protection of alcohols at
room temperature with excellent yields in less than 5 min reaction, making the
overall process safer and greener [13]. The esterification of carboxylic acids with
alcohols is a reaction of great interest because it yields esters that are valuable
intermediates in the chemical industry. Chloroaluminate-based acidic ionic
liquids, as substitutes of inorganic acids, were first tested in the esterification
reaction by Deng et al. [14]. The authors highlight two main advantages of using
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Figure 1.2 Multiple-acidic ionic liquids in the synthesis of bis-indolylmethanes. (Adapted with
permission from Ref. [12]. Copyright (2014) Elsevier.)



