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PREFACE

Computerized recognition and quantification of texture information has been an ac-
tive research domain for the past 50 years, with some of the pioneering work still
widely used today. Recently, the increasing ubiquity of imaging data has driven the
need for powerful image analysis approaches to convert this data into knowledge. One
of the most promising application domains is biomedical imaging, which is a key en-
abling technology for precision medicine (e.g., radiomics and digital histopathology)
and biomedical discovery (e.g., microscopy). The colossal research efforts and progress
made in the general domain of computer vision have led to extremely powerful data
analysis systems. Biomedical imaging relies upon well-defined acquisition protocols to
produce images. This is quite different from general photography. Consequently, the
analysis of biomedical images requires a paradigm change to account for the quanti-
tative nature of the imaging process. Texture analysis is a broadly applicable, powerful
technology for quantitative analysis of biomedical images.

The aims of this book are:

— Define biomedical texture precisely and describe how it is different from general
texture information considered in computer vision;

— Define the general problem to translate 2D and 3D texture patterns from biomedical
images to visually and biologically relevant measurements;

— Describe with intuitive concepts how the most popular biomedical texture analysis
approaches (e.g., gray-level matrices, fractals, wavelets, deep convolutional neural
networks) work, what they have in common, and how they are different;

— Identify the strengths, weaknesses, and current challenges of existing methods in-
cluding both handcrafted and learned representations, as well as deep learning. The
goal is to establish foundations for building the next generation of biomedical tex-
ture operators;

— Showcase applications where biomedical texture analysis has succeeded and failed;

— Provide details on existing, freely available texture analysis software. This will help
experts in medicine or biology develop and test precise research hypothesis.

This book provides a thorough background on texture analysis for graduate stu-
dents, and biomedical engineers from both industry and academia who have basic image
processing knowledge. Medical doctors and biologists with no background in image
processing will also find available methods and software tools for analyzing textures in
medical images.

By bringing together experts in data science, medicine, and biology, we hope that
this book will actively promote the translation of incredibly powerful data analysis

Xiii
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methods into several breakthroughs in biomedical discovery and noninvasive precision

medicine.
Adrien Depeursinge, Omar S. Al-Kadi, J. Ross Mitchell
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CHAPTER 1

Fundamentals of Texture Processing for

Biomedical Image Analysis
A General Definition and Problem Formulation

Adrien Depeursinge*, Julien Fageot’, Omar S. Al-Kadi*

*Ecole Polytechnique Fédérale de Lausanne (EPFL), Biomedical Imaging Group, Lausanne, Switzerland
"University of Applied Sciences Western Switzerland (HES-SO), Institute of Information Systems, Sierre,
Switzerland

#University of Jordan, King Abdullah II School for Information Technology, Amman, Jordan

Abstract

This chapter aims to provide an overview of the foundations of texture processing for biomedical
image analysis. Its purpose is to define precisely what biomedical texture is, how is it different from
general texture information considered in computer vision, and what is the general problem formu-
lation to translate 2D and 3D textured patterns from biomedical images to visually and biologically
relevant measurements. First, a formal definition of biomedical texture information is proposed from
both perceptual and mathematical point of views. Second, a general problem formulation for biomed-
ical texture analysis is introduced, considering that any approach can be characterized as a set of local
texture operators and regional aggregation functions. The operators allow locally isolating desired
texture information in terms of spatial scales and directions of a texture image. The type of desirable
operator invariances are discussed, and are found to be different from photographic image analy-
sis. Scalar-valued texture measurements are obtained by aggregating operator’s response maps over
regions of interest.

Keywords

Quantitative image analysis, Spatial stochastic process, Texton, Heterogeneity, Texture analysis

1.1 INTRODUCTION

Everybody agrees that nobody agrees on the definition of fexture information. Ac-
cording to the Oxford Dictionaries' texture is defined as “the feel, appearance, or
consistency of a surface or a substance.” The context in which the word fexture is used
is fundamental to attach unambiguous semantics to its meaning. It has been widely
used in extremely diverse domains to qualify the properties of images, food, materials,
and even music. In the context of food and sometimes material sciences, characteriz-
ing texture information often involves measuring the response of the matter subject to
forces such as shearing, cutting, compressing, and chewing [1,2]. Starting from the early

1 https://en.oxforddictionaries.com/definition/texture, as of October 10, 2016.
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developmental months of newborn babies, tactile perception of textured surfaces is an
important stage of the human brain development [3]. It is an essential step to be suc-
cessfully acquainted with the physical properties of the surrounding environment [4].
To some extent, estimating the properties and diversity of the latter without having to
touch every surface can be efficiently carried out through vision. Human vision learns
to recognize texture patterns through extensive experimentation confronting visual and
tactile perception of textured surfaces [5]. This provides hints on why human visual
texture recognition performs much beyond the use of low level descriptive terms such
as coarse, edgy, directional, repetitive, and random.

In the context of biomedical imaging, texture information relates to the micro- and
macro-structural properties of biomedical tissue. Radiologists, pathologists, and biolo-
gists are trained to establish links between visual image patterns and underlying cellular
and molecular content of tissue samples [6]. Unfortunately, very large variations of
this complex mapping occur, resulting in image interpretation errors with potentially
undesirable consequences [7-9]. These variations are partly due to the diversity of hu-
man biology and anatomy as well as image acquisition protocols and reconstruction,
compounded by observer training. Important efforts were initiated by medical imag-
ing associations to construct unified terminologies and grading scores in the context of
radiology and histopathology, aiming to limit variations in image interpretation and re-
porting [10-13]. However, in the particular context of biomedical texture information,
the terms used (e.g., heterogeneous enhancement, hypervascular [12]) are often as inadequate
as low level descriptive terms of general textures (e.g., coarse, edgy) while the perception
of human observers is much richer (see Sections 9.4.1 and 9.4.2 of Chapter 9). When
considering three-dimensional architectures of biomedical tissue, human observers have
limited intuition of these 3D solid textures, because they cannot be fully visualized [14].
Only virtual navigation in Multi-Planar Rendering (MPR) and semitransparent visual-
izations are made available by computer graphics and allow observing 2D projections.

Computer-based quantitative image texture analysis has a tremendous potential to
reduce image interpretation errors and can make better use of the image content by
yielding exhaustive, comprehensive, and reproducible analysis of imaging features in
two and three dimensions [15—17]. Nevertheless, besides the lack of a clear definition
of biomedical texture information, several challenges remain, such as: the lack of an
appropriate framework for multiscale, multispectral analysis in 2D and 3D; validation;
and, translation to routine clinical applications. The goal of this book is to illustrate the
importance of these aspects and to propose concrete solutions for optimal biomedical
texture analysis. This chapter will first propose a definition of texture in the particular
context of biomedical imaging (Section 1.2). Second, a general theoretic framework
for Biomedical Texture Analysis (BTA) will be proposed in Section 1.3. The latter
is designed to best leverage the specific properties of biomedical textures. Differences
with the classical texture analysis paradigm in computer vision will be highlighted.
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Important aspects of texture operator and aggregation function design will be further
discussed and illustrated through several concrete examples in Chapter 2. It will also
recapitulate key aspects of biomedical texture processes and analysis, with an aim of
raising awareness of limitations of popular texture operators used in the biomedical
literature while providing directions to design the next generation of BTA approaches.
Chapter 3 will use the comparison axes established in Chapters 1 and 2 to compare most
popular modern biomedical texture analysis approaches. With the purpose of guiding
neophyte or experienced users, a simple checklist is proposed to assess the relevance of
the BTA approach in a particular medical or biological applicative context.

1.2 BIOMEDICAL TEXTURE PROCESSES

This section proposes an extensive definition of biomedical texture information under
biological, medical, physical, statistical, and mathematical viewpoints.

1.2.1 Image intensity versus image texture

Low-level quantitative image analysis (i.e., pixel-level?) can be separated into two main
categories: intensity and texture. Image intensity relates to the statistical distribution of
the pixel values inside a defined Region Of Interest (ROI). The pixel values can be
either normalized across images (e.g., Hounsfield Units (HU) in X-ray Computed To-
mography (CT), Standardized Uptake Values (SUV) in Positron Emission Tomography
(PET)), or unnormalized (e.g., Hematoxylin and Eosin (H&E) stains in histopathology,
Magnetic Resonance Imaging (MRUI)). Classic quantitative measures of image intensity
are the four statistical moments of the pixel values’ distribution (mean, variance, skew-
ness, and kurtosis). Other measures are specific to the considered imaging modality
(e.g., SUV max or Total Lesion Glycolysis (TLG) in PET) [18]. The latter are extremely
useful to characterize the image content, but cannot measure the spatial relationships
between pixel values (see Fig. 1.1). A qualitative keyword such as tumor heterogeneity is
ambiguous because it is unclear if the heterogeneity concerns pixel values (intensity) or
their spatial organization (texture). It is though commonly used to describe the visual
aspect of tumors in radiological images with ambivalent meaning [19-21].

The spatial relationships (i.e., the transitions) between pixel values are precisely what
texture information is encoding. Haidekker defined texture as “a systematic local vari-
ation of image values” [22]. Petrou stated that “the most important characteristic of
texture is that it is scale dependent” and that “different types of texture are visible at
different scales” [23]. This highlights the importance of the variation speed or slope or
oscillation between pixel values, which will be different in smooth versus rough textures
(see Fig. 1.1 left and right). This first notion of the texture scale relates to the spatial

2 The word pixel is used to design both 2D and 3D (voxels) image samples.
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Figure 1.1 The two simulated tumors have identical distribution of the pixel’s values and cannot be
differentiated using intensity image measures only. They differ in the spatial relationships between the
pixels, which is specifically captured by image texture analysis.

frequencies in the image. The higher the spatial frequency, the finer the scale of the
transition between proximate pixel values. A second important notion is the direction
of the transition. These two notions of spatial scale and direction are fundamental for
visual texture discrimination (see Fig. 1.2) [24].

Blakemore et al. provided initial evidence that the human visual system possesses
neurons that are selectively sensitive to directional spatial frequencies [25], which has
been widely confirmed later on [26]. Most approaches proposed for computerized tex-
ture analysis are leveraging these two properties either explicitly (e.g., Gray-Level Cooc-
currence Matrices (GLCM) [27], Gray-Level Run Length Matrices (GLRLM) [28],
Gray-Level Size Zone Matrices (GLSZM) [29], directional filterbanks and wavelets [30],
Histogram of Oriented Gradients (HOG) [31], Local Binary Patterns (LBP) [32], Scat-
tering Transforms (ST) [33,34]) or implicitly (e.g., Convolutional Neural Networks
(CNN) [35,36], Dictionary Learning (DL) [37-39]).

A natural mathematical tool to study directional spatial frequency components in
D-dimensional signals and images is the Fourier transform and is defined in Eq. (1.1).
It is straightforward to see that the Fourier transform for @ = 0 computes the mean of
the function, which is not considered as texture information since it relates the mean
intensity of the pixels in the image. For ||@|| > 0 the modulus of the Fourier transform
quantifies the magnitude of the transitions, where ||@|| is inversely proportional to the
scale and the orientation of the vector @ defines the direction of the spatial frequencies.



