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Preface

Many problems from applied sciences, computer graphics, engineering, optimiza-
tion, economics, physics and other disciplines can be brought in the form of equa-
tions or variational inequalities using mathematical modeling. These equations or
variational inequalities can be for examples: vectors (systems of linear or nonlin-
ear algebraic equations); functions (difference, differential, integral equations); real
or complex numbers (single algebraic equations with single unknowns); linear and
nonlinear complementarity problems; optimality conditions for nonlinear program-
ming. The field of computational sciences gives a lot of opportunity to researchers
to solve these equations and has seen a considerable development in mathematics.
The solutions of such equations can rarely be found in closed form. That is why
most solution methods for these equations are iterative. The practice of numer-
ical analysis for finding solutions is essentially connected to variants of Newton’s
method.

In 1669, Isaac Newton inaugurated his method through the use of numerical ex-
amples to solve equations, but did not use the current iterative expression. Later,
in 1690, Raphson introduced Newton’s method or the also called Newton-Raphson
method. Newton’s method is currently and undoubtedly the most popular one-point
iterative procedure for generating a sequence approximating the solution of equa-
tion. In 1818, Fourier proved that the method converges quadratically in a neigh-
borhood of the root, while Cauchy in 1829 and 1847 provided the multi-dimensional
extension of Newton method. Kantorovich in 1948 published an important paper
extending Newton’s method for functional spaces.

There are usual concepts connected with iterative methods. The first concerns
the evaluation of the function at each iterate to ensure that the iterates remain in
the domain. In general, it is impossible to find the exact set of all initial data for
which a given process is well defined and we restrict ourselves to giving conditions
which guarantee that an iteration sequence is well defined for certain specific initial
guesses. The secondly basic connection concerns the convergence of the sequences
generated by a process and the question of whether their limit points are, in fact,
solutions of the equation. The study about convergence matter of iterative methods
is usually centered on two types: semi-local and local convergence analysis. The
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semi-local convergence matter is, based on the information around an initial point,
to give criteria ensuring the convergence of Newton’s method; while the local one
is, based on the information around a solution, to find estimates of the radii of
convergence balls. There is a plethora of studies on the weakness and/or extension
of the hypothesis made on the underlying operators. The economy of the entire
operations and the question of how fast a given sequence will converge is also a
basic connection to iterative methods. Another concept affects the best chosen
method, algorithm, or software program to solve a specific type of problem and
its descriptions of when a given algorithm or method succeeds or fails. Our main
objective is to expand the applicability of existing iterative procedures or introduce
new ones. This is being achieved by using more precise majorizing sequences than
before. This approach leads to weaker sufficient convergence conditions, tighter er-
ror bounds on the distances involved and a more precise information on the location
of the solutions.

This Book adopts an updated scientific approach that combines recent results
in numerical methods for nonlinear equations and variational inequalities with ap-
plications in various fields of optimization, economics, control theory, engineering,
linear /nonlinear differential equations, partial differential equations and physics.
We present the recent results on the convergence analysis in both finite dimensional
and infinite dimensional spaces. Our attention has also been paid in studying it-
erative procedure on manifolds since there are many numerical problems posed on
manifolds that arise naturally in many contexts. The book also provides comparison
between various investigations made in recent years in the field of computational
sciences and connects numerical analysis with functional analysis, theory of oper-
ators and their applications. Although the book is of a theoretical nature, with
optimization and weakening of existing hypotheses considerations. Each chapter
contains several new theoretical results and important applications in engineering,
in dynamic systems, in input-output systems, in the solution of nonlinear and lin-
ear differential equations and optimization problems. The applications appear in
the form of examples or study cases or they are implied since our results improve
earlier ones that have already been applied in concrete problems. Note that we
have endeavored to make the main text as self-contained as possible, to prove all
results in full detail. In order to make the study useful as a reference source, we
have complemented each chapter with a set of remarks, comments and corollaries
in which literature citations are given, other related results are discussed and var-
ious possible extensions of the results of the text are indicated. Therefore we list
numerous conjectures and open problems as well as alternative models which need
to be explored. The book also contains abundant and updated bibliography in the
field of computational sciences.

This book is intended for researchers and practitioners in applied computational
sciences, mathematical programming, engineering, optimization, mathematical eco-
nomics, senior undergraduate students and graduate students. The goal is to in-
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troduce these powerful concepts and techniques at the earliest possible stage. The
reader is assumed to have had basic knowledge in numerical analysis, computational
linear algebra, theory of operators, functional analysis and computer programming.

Our goal in chapter 1 is to find weaker convergence criteria for Newton’s method
than in earlier studies. It turns out that our sufficient convergence conditions are
weaker and the error bounds are tighter than in earlier studies for many interesting
cases. In this chapter new results on Newton—Kantorovich theory are presented.
In section 1 we use hypotheses on the first Fréchet derivative of involved operator.
These new results are illustrated by several numerical examples, for which the older
convergence criteria do not hold but for which our weaker convergence criteria are
satisfied. In section 2 we present a two-point Newton-like method to approximate
a locally unique solution of a nonlinear equation containing a non-differentiable
term. In section 3 we provide new local and semi-local convergence results for
Newton’s method. The sufficient convergence conditions used in this section do
not include the Lipschitz constant usually associated with Newton’s method. In
section 4 we present a local convergence analysis for Newton’s method under a weak
majorant condition. Qur results provide under the same information a larger radius
of convergence and tighter error estimates on the distances involved than before in
earlier studies. Special cases and applications are also provided for validating the
theoretical results. we present a local convergence analysis for the continuous analog
of Newton’s method. The radius of convergence is larger, the error bounds tighter
and under the same or weaker hypotheses than in earlier studies. In section 5
the concept nondiscrete mathematical induction inaugurated by Potra and Ptadk is
used. We extend the applicability of Newton’s method for approximating a solution
of nonlinear equation using weaker hypotheses. Throughout chapter 1 we present
an illustrative example involving a differential equation containing a Green'’s kernel,
a nonlinear integral equation of Chandrasekhar-type and cubic polynomial equation
to show that different theorems are applicable in some situations in which the other
are not applicable.

In chapter 2 we study special conditions and present some new results for con-
vergence analysis of Newton’s method in a Banach space setting. In section 1
w*-conditioned second Fréchet-derivative is explored. This way we can handle equa-
tions, where the usual Lipschitz-type conditions are non verifiable. It turns out that
a similar result using w-conditioned hypotheses can provide usable error estimates
indicating only linear convergence for Newton’s method. We provide in section 2 an
existence and uniqueness result for nonlinear equations involving regularly smooth
operators, under weaker hypotheses. Our approach extends the applicability and
improves the optimality of Newton-type methods using the same information, under
weaker hypotheses. Moreover, the information on the location of the solution is at
least as precise as in earlier studies. We use in section 3 the special Smale’s a-theory
by introducing the notion of the center vy-condition. We expand the applicability of
Newton’s method. Numerical examples and applications are also provided in each
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section of this chapter.

Chapter 3 exhibits convergence analysis of Newton-type methods in order to
approximate a zero of a mapping on special spaces as Lie groups, Hilbert space and
Banach space with convergence structure. Section 1 presents Newton’s method to
approximate a zero of a mapping from a Lie group into its Lie algebra. Under the
same computational cost and weaker convergence conditions than before. Precise
information on the location of the solution is obtained in the semi-local case and
larger radius of convergence is established in the local case. Note that tighter
error bounds on the distances involved is obtained in both cases. In section 2
we present new semi-local convergence results for continuous modified Newton-
type methods to solve nonlinear operator equations in a real Hilbert space setting.
Convergence analysis is presented in section 3 to approximate a solution of equations
on Banach space with convergence structure. In sections 4 to 6, for approximating
zeros of a vector field on Riemannian manifolds, we present a semi-local convergence
analysis of a bilinear operator free third order method, Shamanskii-type method
and Traub-type method, respectively. A characterization of the convergence under
Kantorovich-type conditions, error estimates and applications are also given in these
three sections.

Chapter 4 presents a recent developments on Secant method. Secant method
uses divided differences operator and is an attractive replacement of Newton’s
method studied in chapters 1 and 2. This method uses a consistent approxima-
tion operator of the Fréchet derivative and is an alternative method of Newton’s
method. Note also that the Secant method is of convergence order 1.6180339887 - - -,
whereas Newton’s method is of order at most 2. It is a self-correcting like Newton’s
method and it is of high efficiency. In section 1 we extend the applicability of the
method of chords in some cases. The error bounds are tighter and the information
on the location of the solution at least as precise under the same information as
before in earlier studies. Application and examples are also provided in this section.
Section 2 exhibits the convergence analysis of Secant-type method using the con-
cept nondiscrete mathematical induction in order to improve error bounds. A local
convergence analysis for an efficient Secant-type method is given in section 3 using
both the Lipschitz continuous and center-Lipshchitz continuous divided differences
of order one. An estimate of the radius of the convergence ball is provided. In
section 4 we use our concept of recurrent functions to provide a new semi-local con-
vergence analysis for secant-like methods. Our convergence criteria and sufficient
convergence conditions are tighter than in earlier studies. A directional Secant-type
methods in Euclidean space is presented in section 5. Using weaker hypotheses and
motivated by optimization considerations, a new existence convergence results are
established. A numerical example to implement the method is also presented in this
section. We unify in section 6 the semi-local convergence analysis of Secant-type
methods under more general Lipschitz-type conditions. We present very general
majorizing sequences and we extend the applicability of Secant-type methods. Our
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analysis includes the computation of the bounds on the limit points of the majoriz-
ing sequences involved. As in chapters 1 to 3 we present in each section of chapter
4 some remarks, examples and applications of our theoretical results.

Chapter 5 develops Gauss—Newton methods for solving nonlinear equations and
convex composite optimization problems. Section 1 concerns the local convergence
analysis of the iteratively regularized Gauss—Newton method for solving ill-posed
problems in a Hilbert space setting. In contrast to earlier studies with Lipschitz
conditions, we only use the weaker center Lipschitz conditions. Our analysis ex-
pands the applicability of this method. A semi-local convergence analysis of the
Gauss—Newton method for convex composite optimization is given in section 2.
We use the concept of quasi-regularity. The convergence analysis is presented un-
der L-average Lipschitz and generalized convex majorant conditions, respectively.
Our results extend the applicability of Gauss-Newton method. Section 3 presents
Gauss—Newton algorithm to find local minimum of penalized nonlinear least square
problems. We develop local convergence analysis from more general Lipschitz-type
conditions than used in earlier studies. Our results, even in special cases, provide
a larger attraction ball and tighter error estimates. In section 4 we establish a lo-
cal convergence analysis of inexact Gauss—-Newton like methods using more precise
majorant conditions. We also provide a clearer relationship between the majorant
function and the associated least squares problem.

Chapters 6, 7 and 8 contain recent results on Halley’s, Chebyshev’s and Broy-
den’s methods, respectively. For Halley’s method, we present semi-local and local
convergence under convex majorants. Kantorovich-type and Smale-type results
are considered as applications and special cases. We finish chapter 6 by a unified
approach to generating majorizing sequences for multi-point iterative procedures
(Traub-type method). In chapter 7 we present in section 1 semi-local convergence
analysis for directional Chebyshev-type methods in finite dimensional space using
recurrent relations and Newton—Kantorovich-type hypotheses. We give in section 2
of chapter 7 a semi-local convergence theorem for a new family of iterative meth-
ods obtained as a combination of the well-known Secant method and Chebyshev’s
method. We give a very general convergence result that allow the application of
these methods to non-differentiable problems. We finish chapter 7 by finer and pre-
cise majorizing sequences for Chebyshev’s method. In chapter 8 we present a new
results on Broyden’s method using w-type conditions. Examples and applications
are also presented in chapters 6 to 8.

The goal of chapter 9 is to give a new convergence analysis of some Newton-like
methods. In section 1 we give an estimate of the convergence radius of the well-
known modified Newton'’s method for multiple zeros, when the involved function
satisfies a Holder and center-Holder continuity conditions. We provide in section
2 a semi-local convergence analysis for a Newton-like method under weak condi-
tions. In particular, we only assume that the Gateaux derivative of the operator
involved is hemicontinuous. Section 3 exhibits a study on the radius of convergence
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for some cubically convergent Newton-type method. A comparison is given be-
tween the radii of this method and Newton’s method. In section 4 we present a fast
two-step Newton-like method. This method unifies earlier methods such as Newton-
like, Chebyshev-Secant, Chebyshev-Newton, Steffensen, Stirling’s and other single
or multi-step methods. We unify in section 5 the semi-local convergence analysis
of Newton-like methods under more general Lipschitz-type conditions and precise
majorizing sequences. Section 6 contains a new result for collection of hybrid meth-
ods combining Newton’s method with frozen derivatives and a family of high order
iterative schemes. We establish in section 7 the local and sem-ilocal convergence of
the relaxed Newton’s method, that is Newton’s method with a relaxation param-
eter. We give a new Kantorovich-like theorem. We also obtain in this section the
recurrent sequence that majorizes the one given by the method and we characterize
its convergence by a result that involves the relaxation parameter. We use a new
technique that allows us on the one hand to generalize and on the other hand to
extend the applicability of the result given initially by Kantorovich.

In the last chapter 10 we present some new results of convergence analysis for
Newton—Tikhonov methods, in order to solve ill-posed operators problems in Hilbert
space. In section 1 we expand the applicability of Newton—Tikhonov method by us-
ing more precise majorizing sequence. This way we provide a semi-local convergence
analysis for this method with some advantages over earlier studies. These advan-
tages are obtained, since we use the more precise center-Lipschitz condition instead
of the Lipschitz condition for the computation of the upper bounds. We also study
the semi-local convergence of the simplified Newton-Tikhonov method. Section
2 develops two-step directional Newton method to solve ill-posed problems under
weak conditions. An iteratively regularized projection method, which converges
quadratically, has been considered in section 3 for obtaining stable approximate
solution of nonlinear ill-posed operator equations. We assume in this section that
only a noisy data are available. Under weaker convergence condition, a choice of
the regularization parameter using an adaptive selection and a stopping rule for the
iteration index using a majorizing sequence are also presented in this section.

Note that we propose in the end of each chapter exercises to apply all obtained
theoretical results.

Ioannis K. Argyros and Said Hilout
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