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Unit 1 Operational Amplifier

1.1 Introduction

In this chapter, we will consider monolithic operational amplifiers (op amps) with
single-ended outputs, both as an example of the utilization of the previously described circuit
building blocks and as an introduction to the design and application of this important class of
analog circuit.

An ideal op amp with a single-ended output has a differential input, infinite voltage
gain, infinite input resistance, and zero output resistance. A conceptual schematic diagram is
shown in Figure 1. 1. While actual op amps do not have these ideal characteristics, their

performance is usually sufficiently good that the circuit behavior closely approximates that of

an ideal op amp in most applications.

Figure 1.1 Ideal operational amplifier

In op amps design, bipolar transistors offer many advantages over their CMOS
counterparts, such as higher transconductance for a given current, higher gain (g,r,),
higher speed; lower input-referred offset voltage and lower input-referred noise voltage. As a
result, op amps made from bipolar transistors offer the best performance in many cases,
including for example dc-coupled, low-offset, low-drift applications. For these reasons,
bipolar op amps became commercially significant first and still usually offer superior analog
performance. However, CMOS technologies have become dominant in building the digital
portions of signal-processing systems because CMOS digital circuits are smaller and dissipate

_ 1 —



less power than their bipolar counterparts. Since these systems often operate on signals that
originate in analog form, analog circuits such as op amps are required to interface to the
digital CMOS circuits. To reduce system cost and increase portability, analog and digital
circuits are now often integrated together, providing a strong economic incentive to use
CMQOS op amps.

In this chapter, we first explore several applications of op amps to illustrate their
versatility in analog circuit and systems design. CMOS op amps are considered next. Then a
general-purpose bipolar monolithic op amp, the 741, is analyzed, and the ways in which the
performance of the circuit deviates from ideality are described. Design considerations for

improving the various aspects of monolithic op-amps low-frequency performance are

described.

1.2 Applications of Operational Amplifiers

1.2.1 Basic Feedback Concepts

Virtually all op-amp applications rely on the principles of feedback. We now consider a
few basic concepts necessary for an understanding of op-amp circuits. A generalized feedback
amplifier is shown in Figure 1. 2. The block labeled ¢ is called the forward or basic amplifier,
and the block labeled f is called the feedback network. The gain of the basic amplifier when
the feedback network is not present is called the open-loop gain, a, of the amplifier, The
function of the feedback network is to sense the output signal S, and develop a feedback
signal Sy, which is equal to f'S,, where f is usually less than unity. This feedback signal is
subtracted from the input signal S,, and the difference S¢ is applied on the basic amplifier,
The gain of the system when the feedback network is present is called the closed-loop gain.

For the basic amplifier we have

S, = aS¢ = a(S;, — Sp) = a(S;, — fS,) (1. D
and thus

S"—.___a :—-_L —_—a' :l ———T

5= v = 7 (ra)= i) 1.2

where T =af is called the loop gain. When T becomes large compared to unity, the closed-

locop gain becomes

1
Amg 7‘ (1.3

Since the feedback network is composed of passive components, the value of f can be set
to an arbitrary degree of accuracy and will establish the gain at a value of 1/f if T > 1,
independent of any variations in the open-loop gain a. This independence of closed-loop
performance from the parameters of the active amplifier is the primary factor motivating the
wide use of op amps as active elements in analog circuits. '

72.-7



For the circuit shown in Figure 1. 2, the feedback 52 S, a
signal tends to reduce the magnitude of S¢ below that of - 5
the open-loop case (for which f=0) when a and f have
the same sign. This case is called negative feedback and Sp /

is the case of practical interest in this chapter. Figure 1.2 A conceptual feedback

With this brief introduction to feedback concepts, amplifier
we proceed to a consideration of several examples of
useful op-amp configurations. Because these example circuits are simple, direct analysis with

Kirchoff’s laws is easier than attempting to consider them as feedback amplifiers.

1.2.2 Inverting Amplifier

The inverting amplifier connection is shown in Figure 1. 3 (a). We assume that op-amp

input resistance is infinite, and that the output resistance is zero as shown in Figure 1. 1 from
KCL at node X,

v.—Vv, , V,—V,
R + R, =0 - (1.4)
R, X R
T
V, Il 11
_ +
v, —o +
_I_ — V=—aV,
() =

(c)

Figure 1.3
(a) Inverting amplifier configurations (b) Noninverting amplifier configuration;

(¢) Voltage-follower configuration

Since R, is connected between the amplifier output and the inverting input, the feedback
" is negative. Therefore, V; would be driven to zero with infinite open-loop gain. On the other

hand, with finite open-loop gain a,



-V,

V.= (1.5)
a
Substituting (1. 5) and (1.4) and rearranging gives
1
Vo, Ry|———F——%—
V. TR 1+ L (14 ) (1.6
1
If the gain of the op amp is large enough that
R,
a(R1 +Rz)>>1 2 (LD
then the closed-loop gain is
Vo o —— _&
a3 (1.8

When the inequality in (1. 7) holds, (1. 8) shows that the closed-loop gain depends
primarily on the external passive components R, and R,. Since these components can be
selected with arbitrary accuracy, a high degree of precision can be obtained in closed-loop
performance independent of variations in the active device (op-amp) parameters. For
example, if the op-amp gain were to change from 5X 10* to 10°,this 100 percent increase in
gain would have almost no observable effect on closed-loop performance provided that (1. 7)
is valid. .

The large gain of op amps allows the approximate analysis of circuits like that of Figure
1. 3(a) to be performed by the use of summing-point constraints. If the op amp is connected
in a negative-feedback circuit, and if the gain of the op amp is very large, then for a finite

value of output voltage the input voltage must approach zero since
V,=—= (1.9

Thus one can analyze such circuits approximately by assuming a priori that the op-amp
input voltage is driven to zero, An implicit assumption in doing so is that the feedback is
negative, and that the circuit has a stable operating point at which (1. 10) is valid.

The assumption that V;= 0 is called a summing-point constraint. A second constraint is
that no current can flow into the op-amp input terminals, since no voltage exists across the
input resistance of the op amp if V,=0. This summing-point approach allows an intuitive
understanding of the operation of the inverting amplifier configuration of Figure 1. 3(a).
Since the inverting input terminal is forced to ground potential, the resistor R, servers to
convert the voltage V, to an input current of value V,/R,. This current cannot flow in the
input terminal of an ideal op amp; therefore, it flows through R;, producing a voltage drop
of V.R;/R,. Because the op-amp input terminal operates at ground potential, the input
resistance of the overall circuit as seen by V, is equal to R;. Since the inverting input of the

amplifier is forced to ground potential by the negative feedback, it is sometimes called a

virtual ground.
J— 4 N



1.2.3 Noninverting Amplifier

The noninverting amplifier is shown in Figure 1. 3(b). Using Figure 1. 1, assume that

no current flows into the inverting op-amp input terminal. If the open-loop gain is a, V;,=
V,/a and

- R \_yv_V¥V
Vz '—V0<R1+R2)'—Vs a (1.10)
Rearranging (1. 10) gives
aR,
Vo_ (|4 R\ RFR (R
V,_(1+R1)1+ aR, “’(1+R1) (.1b
R, +R,

The approximation in (1, 11) is valid to the extent that aR,/(R, +R;)>>1,

In contrast to the inverting case, this circuit displays a very high input resistance as seen
by V, because of the type of feedback used. Also unlike the inverting case, the noninverting
connection causes the common-mode input voltage of the op amp to be equal to V,. An
important variation of this connection is the voltage flower, in which R,->cc and R, =0.

This circuit is shown in Figure 1. 3(c), and its gain is close to unity if a>>1.
1.2.4 Differential Amplifier

The differential amplifier is used to amplify the difference between two voltages. The
circuit is shown in Figure 1. 4. For this circuit, I; = 0 and thus resistors R, and R, form a

voltage divider. Voltage V., is then given by

V.=V, (R_____lfijz) (1.12)
The current I, is
I = (‘—/2—1—;7—‘51)= L (1.13)
The output voltage is given by
V,=V,— LR, (1.14)

If the open-loop gain is infinite, the summing-point constraint that V;=0 is valid and forces
V,=V,. Substituting V,=V_, (1.12), and (1.13) into (1. 14) and rearranging gives

Vv, = gl(v1 —V) (1.15)
1

The circuit thus amplifiers the difference voltage(V,—V,),

Differential amplifiers are often required to detect and amplify small differences between
two sizable voltages. For example, a typical application is the measurement of the difference
voltage between the two arms of a Wheatstone bridge. As in the case of the noninverting
amplifier, the op amp of Figure 1. 4 experiences a common-mode input that is almost equal to

the common-mode voltage (V,+V;)/2 applied to the input terminals when R, =R,.



III——<|>
III——OI N+

V‘+ >_‘L__o+
— +

14
i} a

R, R,

W W W
1

Figure 1.4 Differential amplifier configuration

If—ol~+

1.2.5 Nonlinear Analog Operations

By including nonlinear elements in the feedback network, op amps can be used to
perform nonlinear operations on one or more analog signals. The logarithmic amplifier,
shown in Figure 1. 5, is an example of such an application. Log amplifiers find wide
application in instrumentation systems where signals of very large dynamic range must be
sensed and recorded. The operation of this circuit can again be understood by application of
the summing-point constrains. Because the input voltage of the op amp must be zero, the
resistor R serves to convert the input voltage V| into a current. This same current must then
flow into the collector of the transistor. Thus the circuit forces the collector current of the
transistor to be proportional to the input voltage. Furthermore, the transistor operates in
the forward-active region because Vi = 0. Since the base-emitter voltage of a bipolar
transistor in the forward-active region is logarithmically related to the collector current and
since the output voltage is just the emitter-base voltage of the transistor, a logarithmic

transfer characteristic is produced. In terms of equations

I, = % =1, = I,[exp(%)—-l}z Iﬁxp(%) (1.16)
and ‘
V, =V, (1.17)
Thus
v, =—V71n(7‘j—1‘2> (1.18)

The log amplifier is only one example of a wide variety of op-amp applications in which a
nonlinear feedback element is used to develop a nonlinear transfer characteristic. For
— 6 —



example, two log amplifiers can be used to develop the logarithm of two different signals.
These voltages can be summed, and then the exponential function of the result can be
developed using an inverting amplifier connection with R, replaced with a diode. The result is
an analog multiplier. Other nonlinear operations such as limiting, rectification, peak
detection, squaring, square rooting, raising to a power, and division can be performed in

conceptually similar ways.

Figure 1.5 Logarithmic amplifier configuration

1.2.6 Integrator, Differentiator

The integrator and differentiator circuit, shown in Figure 1. 6, are examples of using op
amps with reactive elements in the feedback network to realize a desired frequency response
or time-domain response. In the case of the integrator, the resistor R is used to develop a
current I, that is proportional to the input voltage. This current flows into the capacitor C,
whose voltage is proportional to the integral of the current I, with respect to time. Since the
output voltage is equal to the negative of the capacitor voltage, the output is proportional to

the integral of the input voltage with respect to time. In terms of equations,

v,
Il = f = Iz (1. 19)
C R
S S ||
" —_— i
v I, 1,

l
|||——? = I
=

(a) (b)

Figure 1.6

(a) Integrator configuration; (b) Differentiator configuration
and
1 H3
m=—EJL¢+mm> (1. 20)
0

_— 7 -



Combining (1.19) and (1. 20) yields

V. =——1—j'vs(r>dr+v,,(o>

RC

0

(1.21)

The performance limitations of real op amps limit the range of V, and the rate of change

of V, for which this relationship is maintained.

In the case of the differentiator, the capacitor C is connected between V, and the

inverting op-amp input. The current through the capacitor is proportional to the time

derivative of the voltage across it, which is equal to the input voltage.

This current flows through the feedback resistor R, producing a voltage at the output

proportional to the capacitor current, which is proportional to the time rate of change of the

input voltage. In terms of equations,

Words and Phrases

monolithic 8}y i B, B E 58 gl A B
bipolar transistor XUk B i & B
transconductance MR

passive component FTIRITH

Kirchoff’s laws #H/RERER

inverting amplifier R ABK S

virtual ground HRB#IH

noninverting amplifier R HA 8%
common-mode input voltage LBl ABE
voltage flower 3 /EERBERS

differential amplifier ZZhHARE
Wheatstone bridge F 3738 & #F
logarithmic amplifier Xt ¥ K 2%
integrator 4> 2%

differentiator ¥ 4> %%

KCL—Kirchoff’s current laws ZH/RERBHESH

Notes

(1.22)

(1. 23)

1. An ideal op amp with a single-ended output has a differential input, infinite voltage

gain, infinite input resistance, and zero output resistance.

BN BEEZHBABRAZWMA TS KBRS, LHF KBART,0 Wil

mﬁD

2. When the inequality in (1. 7) holds, (1. 8) shows that the closed-loop gain depends

— 8 —



primarily on the external passive components R; and R,.

YA DAEXBE LA OFLIE HARS S T ERETIBLEEE R AR,

Exercises

1. Directions: choose the appropriate answer for the following questions.

1. Which of the following characteristics does not necessarily apply to an op-amp?

(a) High gain

(b) low power

(¢) High input impendance

(d) Low output impendance

2. For an op-amp with negative feedback, the output is

(a) equal to the input

(b) increased

(¢) fed back to the inverting input

(d) fed back to the noninverting input

3. The use of negative feedback

(a) reduces the voltage gain of an op-amp

(b) makes the op-amp oscillate

(c) makes linear operation possible

(d) answers (a) and (¢)

4, A certain noninverting amplifier has an R, of 1. 0 kQ and an R, of 100 k. The
closed-loop gain is

(a)100,000 (b)1000 (c) 101 (d)100

5. A voltage follower

(a) has a gain of one

(b) is noninverting

(c) has no feedback resistor

(d) answers (a),(b)and(c)

6. With zeros volts on both inputs, an op-amp ideally should have an output

(a) equal to the positive supply voltage

(b) equal to the negative supply voltage

(c) equal to zero

(d) equal to the CMRR

[I. Directions: Answer the following questions,

1. What is the main purpose of negative feedback?

2. What are the differences between a practical op-amp and the ideal?

I. Directions: Calculate the gain of the circuit Figure 1. 3(a), for a=10* and a =10°,
and R, =1 kQ, R,= 10 kQ.



Unit 2 Low-Pass Filters

2.1 First-Order Filters

An integrator (Figure 2. 1(a)) is the simplest filter mathematically, and it forms the
building block for most modern integrated filters. Consider what we know intuitively about
an integrator. If you apply a DC signal at the input (i. e. , zero frequency), the output will
describe a linear ramp that grows in amplitude until limited by the power supplies. Ignoring
that limitation, the response of an integrator at zerc frequency is infinite, which means that
it has a pole at zero frequency. (A pole exists at any frequency for which the transfer
function’s value becomes infinite. )

Cl—‘— \ Slope

ouTr

Il

20dB/decade

VOUT lOg

Lo Vi \\
(a) \\

Log frequency
(b)

Figure 2.1
(a) A simple RC integrator; (b) A Bode plot of a simple integrator

We also know that the integrator’s gain diminishes with increasing frequency and that at
high frequencies the output voltage becomes virtually zero. Gain is inversely proportional to
frequency, so it has a slope of —1 when plotted on log/log coordinates (i. e. , —20dB/decade
on a Bode plot, Figure 2. 1(b)).

You can easily derive the transfer function as

LT — 8¢ — 2/ o W 2.



where 5 is the complex-frequency variable ¢ + jo and w, is 1/RC. 1f we think of s as
frequency, this formula confirms the intuitive feeling that gain is inversely proportional to
frequency.

The next most complex filter is the simple low-pass RC type (Figure 2. 2(a)). Its
characteristic (transfer function) is

Vin R+1/C 1+4sCR s+ )

When s = 0, the function reduces to wo/wys 1. €. » 1. When s tends to infinity, the

function tends to zero, so this is a low-pass filter. When s= —w,, the denominator is zero
and the function’s value is infinite, indiqating a pole in the complex frequency plane. The
magnitude of the transfer function is plotted against s in Figure 2. 2(b), where the real
component of s (¢) is toward us and the positive imaginary part (jw) is toward the right. The
pole at — w, i5 evident. Amplitude is shown logarithmically to emphasize the function’s
form. For both the integrator and the RC low-pass filter, frequency response tends to zero at
infinite frequency; that is, there is a zero at s=oo. This single zero surrounds the complex
plane.

But how does the complex function in s relate to the circuit’ s response to actual
frequencies? When analyzing the response of a circuit to AC signals, we use the expression
jwL for impedance of an inductor and 1/jwC for that of a capacitor. When analyzing transient
response using Laplace transforms, we use sL and 1/sC for the impedance of these elements.
The similarity is apparent immediately. The jw in AC analysis is in fact the imaginary part of
o, which, as mentioned earlier, is composed of a real part ¢ and an imaginary part jw.

If we replace s by jw in any equation so far, we have the circuit’s response to an angular
frequency. In the complex plot in Figure 2. 2(b), 6=0 and hence s=jw along the positive j
axis. Thus, the function’s value along this axis is the frequency response of the filter. We
have sliced the function along the jw axis and emphasized the RC low-pass filter’s frequency
response curve by adding a heavy line for function values along the positive j axis. The more
familiar Bode plot (Figure 2. 2(c¢)) looks different in form only because the frequency is
expressed logarithmically.

While the complex frequency’s imaginary part (jw) helps describe a response to AC
signals, the real part (¢) helps describe a circuit’ s transient response, Looking at Figure
2.2(b), we can therefore say something about the RC low-pass filter’ s response as compared
to that of the integrator. The low-pass filter’s transient response is more stable, because its
pole is in the negative-real half of the complex plane. That is, the low-pass filter makes a
decaying-exponential response to a step-function input; the integrator makes an infinite
response. For the low-pass filter, pole positions further down the —¢ axis mean a higher «; ,
a shorter time constant, and therefore a quicker transient response. Conversely, a pole closer
to the j axis causes a longer transient response.

So far, we have related the mathematical transfer functions of some simple circuits to



their associated poles and zeroes in the complex-frequency plane. From these functions, we
have derived the circuit’s frequency response (and hence its Bode plot) and also its transient
response. Because both the integrator and the RC filter have only one s in the denominator of

their transfer functions, they each have only one pole. That is, they are first-order filters.

21
18
15

~ 12
o
2 9
]
) s 6
V,\ R l/ull 8_
o 1 o 2
[
-3 1 =210
g —1.5
I o
’ 0.0
1.5
(a) (b)
w,=1/RC
i
log—=

Log frequency
(c)

Figure 2.2
(a) A simple RC low-pass filters; (b) The complex function of an RC low-pass filter

(c) A Bode plot of a low-pass filter

However, as we can see from Figure 2. 1(b), the first-order filter does not provide a
very selective frequency response. To tailor a filter more closely to our needs, we must move

on to higher orders. From now on, we will describe the transfer function using f(s) rather
than the cumbersome Voyr/Vi.

2.2 Second-Order Low-Pass Filters

A second-order filter has s* in the denominator and two poles in the complex plane. You
can obtain such a response by using inductance and capacitance in a passive circuit or by

creating an active circuit of resistors, capacitors, and amplifiers. Consider the passive LC



