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. - | PREFACE |

he two major goals of this book are to raise awareness of the impact

that algorithms can have on the efficiency of a program and to

develop the skills necessary to analyze any algorithms that are used in
programs. In looking at many commercial products today, it appears that some
software designers are unconcerned about space and time efficiency. If a pro-
gram takes too much space, they expect that the user will buy more memory.
If a program takes too long, they expect that the user will buy a faster com-
puter.

There are limits, however, on how fast computers can ever become because
there are limits on how fast electrons can travel down "wires," how fast light
can travel along fiber optic cables, and how fast the circuits that do the calcula-
tions can switch. There are other limits on computation that go beyond the
speed of the computer and are directly related to the complexity of the prob-
lems being solved. There are some problems for which the fastest algorithm
known will not complete execution in our lifetime. Since these are important
problems, algorithms are needed that provide approximate answers.

In the early 1980s, computer architecture severely limited the amount of
speed and space on a computer. Some computers of that time frequently lim-
ited programs and their data to 64K of memory, where today's personal com-
puters regularly come equipped with more than 1,000 times that amount.
Though today's software is much more complex than that in the 1980s and
today's computers are much more capable, these changes do not mean we
can ignore efficiency in our program design. Some project specifications will
include time and space limitations on the final software that may force pro-
grammers to look for places to save memory and increase speed. The com-
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pact size of personal digital assistants (PDAs) also limits the size and speed of
software.

Pedagogy

What I hear, I forget.

What I see, I remember.

What I do, I understand.

—Confucius

The material in this book is presented with the expectation that it can be read
independently or used as part of a course that incorporates an active and coop-
erative learning methodology. To accomplish this, the chapters are clear and
complete so as to be easy to understand and to encourage readers to prepare by
reading before group meetings. All chapters include study suggestions. Many
include additional data sets that the reader can use to hand-execute the algo-
rithms for increased understanding of them. The results of the algorithms
applied to this additional data are presented in Appendix C. Each section has a
number of exercises that include simple tracing of the algorithm to more com-
plex proof-based exercises. The reader should be able to work the exercises in
each chapter. They can, in connection with a course, be assigned as homework
or can be used as in-class assignments for students to work individually or in
small groups. An instructor's manual that provides background on how to teach
this material using active and cooperative learning as well as giving exercise
solutions is available. Chapters 2, 3, 5, 6, and 9 include programming exercises.
These programming projects encourage readers to implement and test the
algorithms from the chapter, and then compare actual algorithm results with
the theoretical analysis in the book.

Active learning is based on the premise that people learn better and retain
information longer when they are participants in the learning process. To
achieve that, students must be given the opportunity to do more that just listen
to the professor during class. This can best be accomplished in an analysis of
algorithms course by the professor giving a short introductory lecture on the
material, and then having students work problems while the instructor circu-
lates around the room answering questions that this application of the material
raises.
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Cooperative work gives students an opportunity to answer simple questions
that others in their group have and allows the professor to deal with bigger
questions that have stumped an entire group. In this way, students have a
greater opportunity to ask questions and have their concerns addressed in a
timely manner. It is important that the professor observe group work to make
sure that group-wide misconceptions are not reinforced. An additional way for
the professor to identify and correct misunderstandings is to have groups regu-
larly submit exercise answers for comments or grading.

To support student preparation and learning, each chapter includes the pre-
requisites needed, and the goals or skills that students should have on comple-
tion, as well as suggestions for studying the material.

Algorithms

Since the analysis of algorithms is independent of the computer or program-
ming language used, algorithms are given in pseudo-code. These algorithms
are readily understandable by anyone who knows the concepts of conditional
statements (for example, IF and CASE/SWITCH), loops (for example, FOR
and WHILE), and recursion.

Course Use

One way that this material could be covered in a one-semester course is by
using the following approximate schedule:

Chapter 1 2 weeks
Chapter 2 1 week
Chapter 3 2 weeks
Chapter 4 1 week
Chapter 5 1 week
Chapter 6 2 weeks
Chapter 7 2 weeks
Chapter 8 1 week
Chapter 9 2 weeks

Chapters 2,4, and 5 are not likely to need a full week, which will provide time
for an introduction to the course, an explanation of the active and cooperative
learning pedagogy, and hour examinations. Depending on the background of
the students, Chapter 1 may be covered more quickly as well.
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— [CHAPTER]

Analysis Basics

PREREQUISITES
Before beginning this chapter, you should be able to

* Read and create algorithms

¢ Read and create recursive algorithms

* Identify comparison and arithmetic operations
* Use basic algebra

GOALS
At the end of this chapter you should be able to

* Describe how to analyze an algorithm

« Explain how to choose the operations that are counted and why others are
not

* Explain how to do a best-case, worst-case, and average-case analysis
* Work with logarithms, probabilities, and summations

* Describe 6( f), Q( f ), O( f), growth rate, and algorithm order

* Use a decision tree to determine a lower bound on complexity

* Convert a simple recurrence relation into its closed form

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. Additionally, you should try to answer any
questions before reading on. A hint or the answer to the question is in the sen-
tences following it.



