B8 8 F‘=-'3 ¥ ¥ 5 8
BIMLEER #‘E&I%ﬁﬂiﬂ%ﬁ%

H it

HiEaHw
— ANMIFEIFHE

(RENRR)

ANALYSIS OF ALGORITHMS

An Active Learning Approach

B Jeffrey J. McConnell

™

%F"ﬁ B H
Higher Education Press

B Z oM
—BYHIFEIRZE
CREERRRD

ANALYSIS OF ALGORITHMS

An Active Learning Approach

Jeffrey J. McConnell

RSN

B : 01-2003-0688 S

Analysis of Algorithms:An Active Learning Approach, First Edition

Jeffrey J. McConnell

ORIGINAL ENGLISH LANGUAGE EDITION PUBLISHED BY

Jones and Bartlett Publishers, Inc.
40 Tall Pine Drive
Sudbury,MA 01776

COPYRIGHT 2001
ALL RIGHTS RESERVED

BBEMRBE (CIP) 8iE

HHAr: ARNEI L (F) ERER (McCo
nnell,].J.) ¥F. —EEHK. —dts. BEHE HEM,
2003.3

ISBN 7-04-012659-1

1.B... 1.&... M.BE2W-B%¥8-#
#-%x V.TP311

W AR A B 48 CIP BB F (2003) 8 012578 &

HERET HEHE LR MRk
H GETERRRWBEESS S B2MEH
BREINES 100009 i 1t
& W 010 - 64014048

@ W WEREIERETH

21 Bl JtRBEEENR)

F A 787%x1092 1/16 iR n
En ¥ 19.75 ED b/d
L # 400 000 E #

010 - 64054588

800 - 810 — 0598
http://www. hep. edu. cn
http:// www. hep. com. cn

2003 3 AB 1K
2003 4E 3 A% 1 WEIRI
28.00 T

FHMAGRR FMR BAEFREE, FAFUESHERRR AR,

IMBRIH WMRIELER

it

T

20 K, DUt ENAEERAARKOEERFREANEREHF. HEK.
FE FFAXASFFETRAYH. EERFHANREERNA, ¥ TH
RAEEBEEFYHEHRR, AFFERFRTFENER.

HAN21 4, ARHEEFRENAN WTO, BEZYHERESAEMHN. &
EEEFLERE0MLERBATAELE, BE5RARREL, EE50F. %
REGERML, TARAZE. BRBEELHKREEMEELT L ERE 46
71, BREMEBATEENFRRAAGREREE. 5 HEMERFRHEARK
FHM, EHFGNERBHFAREERRETGERE, REWH A wBFERAH
AR B ARAL R — R EERH.

Kk, BEHERBMBERT B G LT RE ENFEREARSA 5 3K K
I, FRREBTARER, —REBAT, —REMNE. EHERT HREH
BERFREAG AN ERANTANT, ERBREHEE, £—#5| 34820 2 #
HMHEEHERR. XERXREREZR T/ EHFF, EFATOR YRR R
FEAFEFL TR, HBWERZERRRECNEBIARFTARNEFIER,
RRTEHNEREERFEARTN —HAT, TANBELIREEN, SEAR
KRB R Y,

RN A THRAZ TR BERFT AAHERANGAERLART, EARE
HERARFRAGER.) 2485, EdARENMMH#TS R BB XA+,
X TEARENEL AFRX T LHRERERTRAT AW, £, John Wiley
8] W ARE TUR L 38 B 48 B A B H0 Bl & & Silberschatz %3t 2 S F 1F (B
RAEMEY), RENEIRERHA, MTIREFAHABUS|#M. William Stallings
SEYGE TAXERIRANEERNERRRIIEMN, RP A2 AN KBLE
BN FFREEHDCTLAG RN ELE TEHM R, IUTIHEMTRAR
WAAEE. EXFEFH Jawei Han £ 48 (RELE) REHS+AFER=
B FHE. BB F ¥ Thomas Cormen R E B T ¥, FHWT A¥H/L

FEFAFARENEREE(HEER), BEFHT 11 FHEHZE T 2001 £ H K
TH# K. B ¥ E ¥ T £ E Massachusetts X F 8 James Kurose ¥ 3%, ¥ A XE = fr
BREE 0 ARBAHKFRANHER, dbTRE GEENFMELY HBEE, |
RERFH. AELHTRZIRY. EFNRKIAKNEN T T, HEHFTHK
HBTARPEBNTH, XEFHOEMEATARYE. 28E. £RUEF
o2

FEBUFBENPESAGEEARRES S L F T, RFRE S EEEHA
HEREEELHRRE. RNESHEFNIAN TS, TRERZFBH5 #E 4
BAFOEM, WHRETH G iHEBARE LR TR, s $HMNNES
BAEREAHEY, LS ARFRFLAERE. PENRTETIEA, SMEHK
AEFEABEHEEERIY ARITHRERERE.

SIS EMNE R, RNEEBFYCRK, EREIESEAGHEBAA
¥¥ ik, REBRUMHAT, ERNAKEPEMENBKRE L, £EEAEXL
BREESLE, EXERFLENFFEN LEAS AN R fAH.

BW, HEHNEALE S i RBSI RN KGN TOINR, X420
RIEFEENFFRAANEERRE Y — FHUSEYRETR TRALAER
RENNEIARKEAS, SR LBRREFLDLEEL¥E, UERSIESL IT
e X EBHFEEY, WREAN L AR Y BERER, REREFEATIRY
M REE.

BNAFL B BER, BERENHE, YREER-ANRBRENE LY
AAA, REBEKEASNERTEES, RAREEEZ bHRERE, mik#
HERE AR, ATHARNEREFNBRARLE.

¥EHBEHT
ZOO0=%=A

. - | PREFACE |

he two major goals of this book are to raise awareness of the impact

that algorithms can have on the efficiency of a program and to

develop the skills necessary to analyze any algorithms that are used in
programs. In looking at many commercial products today, it appears that some
software designers are unconcerned about space and time efficiency. If a pro-
gram takes too much space, they expect that the user will buy more memory.
If a program takes too long, they expect that the user will buy a faster com-
puter.

There are limits, however, on how fast computers can ever become because
there are limits on how fast electrons can travel down "wires," how fast light
can travel along fiber optic cables, and how fast the circuits that do the calcula-
tions can switch. There are other limits on computation that go beyond the
speed of the computer and are directly related to the complexity of the prob-
lems being solved. There are some problems for which the fastest algorithm
known will not complete execution in our lifetime. Since these are important
problems, algorithms are needed that provide approximate answers.

In the early 1980s, computer architecture severely limited the amount of
speed and space on a computer. Some computers of that time frequently lim-
ited programs and their data to 64K of memory, where today's personal com-
puters regularly come equipped with more than 1,000 times that amount.
Though today's software is much more complex than that in the 1980s and
today's computers are much more capable, these changes do not mean we
can ignore efficiency in our program design. Some project specifications will
include time and space limitations on the final software that may force pro-
grammers to look for places to save memory and increase speed. The com-

vi

PREFACE

pact size of personal digital assistants (PDAs) also limits the size and speed of
software.

Pedagogy

What I hear, I forget.

What I see, I remember.

What I do, I understand.

—Confucius

The material in this book is presented with the expectation that it can be read
independently or used as part of a course that incorporates an active and coop-
erative learning methodology. To accomplish this, the chapters are clear and
complete so as to be easy to understand and to encourage readers to prepare by
reading before group meetings. All chapters include study suggestions. Many
include additional data sets that the reader can use to hand-execute the algo-
rithms for increased understanding of them. The results of the algorithms
applied to this additional data are presented in Appendix C. Each section has a
number of exercises that include simple tracing of the algorithm to more com-
plex proof-based exercises. The reader should be able to work the exercises in
each chapter. They can, in connection with a course, be assigned as homework
or can be used as in-class assignments for students to work individually or in
small groups. An instructor's manual that provides background on how to teach
this material using active and cooperative learning as well as giving exercise
solutions is available. Chapters 2, 3, 5, 6, and 9 include programming exercises.
These programming projects encourage readers to implement and test the
algorithms from the chapter, and then compare actual algorithm results with
the theoretical analysis in the book.

Active learning is based on the premise that people learn better and retain
information longer when they are participants in the learning process. To
achieve that, students must be given the opportunity to do more that just listen
to the professor during class. This can best be accomplished in an analysis of
algorithms course by the professor giving a short introductory lecture on the
material, and then having students work problems while the instructor circu-
lates around the room answering questions that this application of the material
raises.

PREFACE wii

Cooperative work gives students an opportunity to answer simple questions
that others in their group have and allows the professor to deal with bigger
questions that have stumped an entire group. In this way, students have a
greater opportunity to ask questions and have their concerns addressed in a
timely manner. It is important that the professor observe group work to make
sure that group-wide misconceptions are not reinforced. An additional way for
the professor to identify and correct misunderstandings is to have groups regu-
larly submit exercise answers for comments or grading.

To support student preparation and learning, each chapter includes the pre-
requisites needed, and the goals or skills that students should have on comple-
tion, as well as suggestions for studying the material.

Algorithms

Since the analysis of algorithms is independent of the computer or program-
ming language used, algorithms are given in pseudo-code. These algorithms
are readily understandable by anyone who knows the concepts of conditional
statements (for example, IF and CASE/SWITCH), loops (for example, FOR
and WHILE), and recursion.

Course Use

One way that this material could be covered in a one-semester course is by
using the following approximate schedule:

Chapter 1 2 weeks
Chapter 2 1 week
Chapter 3 2 weeks
Chapter 4 1 week
Chapter 5 1 week
Chapter 6 2 weeks
Chapter 7 2 weeks
Chapter 8 1 week
Chapter 9 2 weeks

Chapters 2,4, and 5 are not likely to need a full week, which will provide time
for an introduction to the course, an explanation of the active and cooperative
learning pedagogy, and hour examinations. Depending on the background of
the students, Chapter 1 may be covered more quickly as well.

viti

PREFACE

Acknowledgements

I would like to acknowledge all those who helped in the development of this
book. First, I would like to thank the students in my “Automata and Algo-
rithms” course (Spring 1997, Spring 1998, Spring 1999, Spring 2000, and Fall
2000) for all of their comments on earlier versions of this material.

The reviews that Jones and Bartlett Publishers obtained about the manu-
script were most helpful and produced some good additions and clarifications.
I would like to thank Douglas Campbell (Brigham Young University), Nancy
Kinnersley (University of Kansas), and Kirk Pruhs (University of Pittsburgh)
for their reviews.

At Jones and Bartlett, I would like to thank my editors Amy Rose and
Michael Stranz, and production assistant Tara McCormick for their support of
this book. I am especially grateful to Amy for remembering a brief conversa-
tion about this project from a few years ago. Her memory and efforts are
appreciated very much. I would also like to thank Nancy Young for her copy-
editing and Brooke Albright for her proofreading. Any errors that remain are
solely the author’s responsibility.

Lastly, [am grateful to Fred Dansereau for his support and suggestions dur-
ing the many stages of this book, and to Barney for the wonderful diversions
that only a dog can provide.

Chapter 1

ICONTENTS|

Preface v

Analysis Basics 1

1.1

1.2

1.3

1.4

1.5

What is Analysis? 3

1.1.1 Input Classes 7
1.1.2 Space Complexity 9
1.1.3 Exercises 10

What to Count and Consider 10
1.2.1 Cases to Consider 11

Best Case 11

Worst Case 12

Average Case 12
1.2.2 Exercises 13

Mathematical Background 13
1.3.1 Logarithms 14

1.3.2 Binary Trees 15

1.3.3 Probabilities 15

1.3.4 Summations 16

1.3.5 Exercises 18

Rates of Growth 20

1.41 Classification of Growth 22
Big Omega 2:
BigOh 2!
Big Thet. 23
Finding Big Oh 23
Notation 23

1.4.2 Exercises 23

Divide and Conquer Algorithms 24
Recursive Algorithm Efficiency 26

1.5.1 Tournament Method 27

15.2 Lower Bounds 28

1.5.3 Exercises 31

X CONTENTS

1.6 Recurrence Relations 32
1.6.1 Exercises 37

1.7 Analyzing Programs 38

Chapter 2 Searching and Selection Algorithms 41

2.1 Sequential Search 43
2.1.1 Worst-Case Analysis 44
2.1.2 Average-Case Analysis 44
2.1.3 Exercises 46

2.2 Binary Search 46
2.2.1 Worst-Case Analysis 48
2.2.2 Average-Case Analysis 49
2.2.3 Exercises 52

2.3 Selection 53
2.3.1 Exercises 55

2.4 Programming Exercise 55

Chapter 3 Sorting Algorithms 57

3.1 Insertion Sort 59
3.1.1 Worst-Case Analysis 60
3.1.2 Average-Case Analysis 60
3.1.3 Exercises 62

3.2 Bubble Sort 63
3.2.1 Best-Case Analysis 64
3.22 Worst-Case Analysis 64
3.2.3 Average-Case Analysis' 65
3.2.4 Exercises 67

33 Shellsort 68
3.3.1 Algorithm Analysis 70
3.3.2 The Effect of the Increment 71
33.3 Exercises 72

34 Radix Sort 73
3.4.1 Analysis 74
342 Exercises 76

3.5 Heapsort 77
FixHeap 78
Constructing the Heap 79
Final Algorithm 80

Chapter 4

Chapter S

3.6

3.7

3.8

3.9
3.10

CONTENTS

3.5.1 Worst-Case Analysis 80
3.5.2 Average-Case Analysis 82
3.5.3 Exercises 83

Merge Sort 83
3.6.1 MergeLists Analysis 85
3.6.2 MergeSort Analysis 86
3.6.3 Exercises 88
Quicksort 89
Splitting the List 90
3.7.1 Worst-Case Analysis 91
3.7.2 Average-Case Analysis 91
3.7.3 Exercises 94
External Polyphase Merge Sort 95
3.8.1 Number of Comparisons in Run Construction 99
3.82 Number of Comparisons in Run Merge 99
3.8.3 Number of Block Reads 100
3.8.4 Exercises 100
Additional Exercises 100
Programming Exercises 102

Numeric Algorithms 105

4.1

4.2

4.3

Calculating Polynomials 107

4.1.1 Horner’s Method 108

4.1.2 Preprocessed Coefficients 108

413 Exercises 111

Matrix Multiplication 112

4.2.1 Winograd’s Matrix Multiplication 113
Analysis of Winograd’s Algorithm 114

4.2.2 Strassen’s Matrix Multiplication 115

423 Exercises 116

Linear Equations 116

43.1 Gauss-Jordan Method 117

4.3.2 Exercises 119

Matching Algorithms 121

5.1

String Matching 122

5.1.1 Finite Automata 124

5.1.2 Knuth-Morris-Pratt Algorithm 125
Analysis of Knuth-Morris-Pratt 127

xi

Xii CONTENTS

Chapter 6

5.2

5.3

5.1.3 Boyer-Moore Algorithm
The Match Algorithm 129
The Slide Ammay 130
The jump Array 132

Analysis 135
5.1.4 Exercises 135

Approximate String Matching 136

5.2.1 Analysis 138
5.2.2 Exercises 139

Programming Exercises

Graph Algorithms 141

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8

Graph Background and Terminology 144

6.1.1 Terminology 145
6.1.2 Exercises 146

Data Structure Methods for Graphs

139

128

6.2.1 The Adjacency Matrix 148

6.2.2 The Adjacency List
6.2.3 Exercises 149

Depth-First and Breadth-First Traversal Algorithms

149

6.3.1 Depth-First Traversal 150
6.3.2 Breadth-First Traversal 151

6.3.3 Traversal Analysis
6.3.4 Exercises 154

Minimum Spanning Tree Algorithm 155

153

147

6.4.1 The Dijkstra-Prim Algorithm 155
6.4.2 The Kruskal Algorithm

6.4.3 Exercises 162
Shortest-Path Algorithm

163

159

6.5.1 Dijkstra’s Algorithm 164

6.5.2 Exercises 167

Biconnected Component Algorithm 168

6.6.1 Exercises 171
Partitioning Sets 172

Programming Exercises

174

150

CONTENTS

Chapter 7 Parallel Algorithms 177

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Parallelismm Introduction 178

7.1.1 Computer System Categories 179
Single Instruction Single Data 179
Single Instruction Multiple Data 179
Multiple Instruction Single Data 179
Multiple Instruction Multiple Data 180

7.1.2 Parallel Architectures 180
Loosely versus Tightly Coupled Machines 180
Processor Communication 181

7.1.3 Principles for Parallelism Analysis 182

7.1.4 Exercises 183

The PRAM Model 183
7.2.1 Exercises 185

Simple Parallel Operations 185

7.3.1 Broadcasting Data in a CREW PRAM Model 186
7.3.2 Broadcasting Data in a EREW PRAM Model 186
7.3.3 Finding the Maximum Value in a List 187

7.3.4 Exercises 189

Parallel Searching 189
7.4.1 Exercises 191

Parallel Sorting 191

7.5.1 Linear Network Sort 191
7.5.2 Odd-Even Swap Sort 195
7.5.3 Other Parallel Sorts 196
7.5.4 Exercises 197

Parallel Numerical Algorithms 198
7.6.1 Matrix Multiplication on a Parallel Mesh 198

Analysis 203
7.6.2 Matrix Multiplication in a CRCW PRAM Model 204
Analysis 204
7.6.3 Solving Systems of Linear Equations with an SIMD
Algorithm 205

7.6.4 Exercises 206

Parallel Graph Algorithms 207

7.7.1 Shortest-Path Parallel Algorithm 207

7.7.2 Minimum Spanning Tree Parallel Algorithm 209
Analysis 210

7.7.3 Exercises 211

xiii

Xiv CONTENTS

Chapter 8 Nondeterministic Aigorithms 213

8.1 What is NP? 214
8.1.1 Problem Reductions 217
8.1.2 NP-Complete Problems 218

8.2 Typical NP Problems 220
8.2.1 Graph Coloring 220
8.2.2 Bin Packing 221
8.2.3 Backpack Problem 222
8.2.4 Subset Sum Problem 222
8.2.5 CNF-Satisfiability Problem 222
8.2.6 Job Scheduling Problem 223
8.2.7 Exercises 223

8.3 What Makes Something NP? 224
83.1 IsP=NP? 225
8.3.2 Exercises 226

8.4 Testing Possible Solutions 226
8.4.1 Job Scheduling 227
8.4.2 Graph Coloring 228
8.4.3 Exercises 229

Chapter 9 Other Algorithmic Techniques 231

9.1 Greedy Approximation Algorithms 232
9.1.1 Traveling Salesperson Approximations 233
9.1.2 Bin Packing Approximations 235
9.1.3 Backpack Approximation 236
9.1.4 Subset Sum Approximation 236
9.1.5 Graph Coloring Approximation 238
9.1.6 Exercises 239

9.2 Probabilistic Algorithms 240

9.2.1 Numerical Probabilistic Algorithms 240
Buffon’s Needle 241
Monte Carlo Integration 242
Probabilistic Counting 243

9.2.2 Monte Carlo Algorithms . 244
Majority Element 245
Monte Carlo Prime Testing 246

9.2.3 Las Vegas Algorithms 246

9.2.4 Sherwood Algorithms 249

9.3

9.4

CONTENTS

9.2.5 Probabilistic Algorithm Comparison 250
9.2.6 Exercises 251

Dynamic Programming 252

9.3.1 Array-Based Methods 252

9.3.2 Dynamic Matrix Multiplication 255
9.3.3 Exercises 257

Programming Exercises 258

Appendix A Random Number Table 259

Appendix B Pseudorandom Number Generation 261
Appendix C Results of Chapter Study Suggestion 265
Appendix D References 279

Index 285

XV

— [CHAPTER]

Analysis Basics

PREREQUISITES
Before beginning this chapter, you should be able to

* Read and create algorithms

¢ Read and create recursive algorithms

* Identify comparison and arithmetic operations
* Use basic algebra

GOALS
At the end of this chapter you should be able to

* Describe how to analyze an algorithm

« Explain how to choose the operations that are counted and why others are
not

* Explain how to do a best-case, worst-case, and average-case analysis
* Work with logarithms, probabilities, and summations

* Describe 6(f), Q(f), O(f), growth rate, and algorithm order

* Use a decision tree to determine a lower bound on complexity

* Convert a simple recurrence relation into its closed form

STUDY SUGGESTIONS

As you are working through the chapter, you should rework the examples to
make sure you understand them. Additionally, you should try to answer any
questions before reading on. A hint or the answer to the question is in the sen-
tences following it.

