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Preface

Five years ago, in the summer of 1993, we set out to write a slender mono-
graph tentatively entitled The Free Oscillations of the Earth. With each
e-mail exchange of draft chapters, our modest ambitions mushroomed; the
final result is this book— Theoretical Global Seismology—an advanced trea-
tise intended to be read by graduate students and researchers in geophysics
and allied fields. Although the present title is more indicative of the scope
than the original, the contents nevertheless reflect the book’s origins. We
devote our attention almost exclusively to the forward problem of comput-
ing synthetic seismograms upon a realistic three-dimensional model of the
FEarth, with a strong emphasis on the normal-mode summation method.
Free oscillations have many close associations with surface waves, and we
consider them in some detail as well; we give shorter shrift to body waves,
and do not discuss seismic instrumentation, data analysis procedures, or
geophysical inverse theory at all.

The introductory chapter recounts the history of free-oscillation and
surface-wave research, beginning with the earliest theoretical investiga-
tion of the oscillations of an elastic sphere in the 1820’s, through the
first observation of the gravest terrestrial oscillations following the great
Chile earthquake of 1960, and concluding with the initial determinations
of global upper-mantle heterogeneity using digitally recorded seismograms
in the 1980’s. The remainder of the text—Ilike ancient Gaul—is divided
into three parts. In Part I—Foundations—we derive the linearized equa-
tions of motion governing both an elastic and anelastic Earth subject to a
non-hydrostatic state of initial stress, and show how to express the elastic-
gravitational response to an arbitrary earthquake source as a sum of free os-
cillations or normal modes. We conclude with a discussion of the Rayleigh-
Ritz method, which yields a truncated matrix formulation that is identical
to the classical theory of the small oscillations of a system with a finite num-
ber of degrees of freedom, generalized to account for rotation and anelastic-
ity. In Part 11— The Spherical Earth—we restrict attention to the case of an
Earth model that is non-rotating and spherically symmetric; the toroidal
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and spheroidal eigenfrequencies and eigenfunctions of such a model can be
found essentially exactly by numerical integration of the governing radial
differential equations. We show how to calculate synthetic seismograms
on a spherical Earth by means of normal-mode summation, and discuss
the propagation of Love and Rayleigh surface waves as well as mode-ray
duality. These results form the basis for the more general considerations
in Part III—The Aspherical Farth—where we use perturbation theory to
treat the splitting and coupling of the normal-mode multiplets produced by
the Earth’s rotation, ellipticity and other departures from spherical sym-
metry, and JWKB theory to describe the propagation of both body waves
and surface waves upon a laterally heterogeneous Earth.

The three parts are arranged in order of decreasing “shelf life”. The fun-
damental equations and results obtained in Part I are applicable to a very
general Earth model, and should provide the basis for discussions of the
elastic-gravitational deformation of the Earth into the foreseeable future.
The results pertaining to a spherical Earth in Part II are likewise well es-
tablished; only relatively minor numerical details are likely to change as the
spherically averaged structure of the Earth continues to be refined. The ap-
proximate methods of dealing with the Earth’s lateral heterogeneity which
we discuss in Part IIT are not as well developed; three-dimensional global
tomography is an extremely active research field at the present time, and
improvements in the procedures and results described here seem likely in
the future. In addition to the fifteen chapters in Parts I through III, there
are four mathematical appendixes devoted to vectors and tensors, ordinary
and generalized spherical harmonics, and the matrix machinery needed to
calculate coupled-mode synthetic seismograms on a rotating, anelastic, lat-
erally heterogeneous Earth.

Variational principles appear in a number of guises, and provide a unify-
ing thread which serves to knit the various chapters together. We enunciate
Hamilton's principle for a general elastic Earth model in Chapter 3, and
discuss its frequency-domain analogue, Rayleigh’s principle, on both a non-
rotating and rotating Earth in Chapter 4. We extend Rayleigh’s principle to
an anelastic Earth in Chapter 6, deduce the equivalent elastic and anelas-
tic matrix principles in Chapter 7, and utilize the orthonormality of the
surface spherical harmonics to obtain a purely radial variational principle
on a spherically symmetric Earth in Chapter 8. The one-dimensional and
three-dimensional versions of Rayleigh’s principle provide the basis for the
spherical and aspherical perturbation analyses in Chapters 9 and 13. Fi-
nally, we develop ray theory for body waves and JWKB theory for surface
waves on a smooth laterally heterogeneous Earth using an associated slow
variational principle in Chapters 15 and 16.

The subject matter of this book may be described as mathematical in
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the sense that there is a high proportion of equations to words; however, all
of the theoretical considerations are purely formal, with no attempt at rigor
whatsoever. We are not finicky about the continuity and differentiability of
displacement, strain and stress fields, or the open or closed nature of regions
within the Earth, except where it matters to get the physics right. The only
mathematical property of the elastic-gravitational operator governing the
Earth’s free oscillations which is considered to be physically significant is
whether or not it is Hermitian. We blithely assume that the normal modes
of an elastic Earth model are complete, ignore the presence of a branch cut
in developing a mode-sum representation of the response of an anelastic
Earth, manipulate infinite matrices without regard for convergence, and
seldom worry about the precise nature of the equality in spherical-harmonic
and other infinite orthonormal eigenfunction expansions.

Sections denoted by a star* contain more esoteric material which may
be omitted upon a first reading. Many of the starred sections deal with
the theoretical complications introduced by the Earth’s rotation; for ex-
ample, in analyzing the influence of anelasticity upon the free oscillations,
it is necessary to introduce the dual eigenfunctions § associated with the
“anti-Earth” having the opposite sense of rotation, as well as the ordinary
eigenfunctions s of the Earth itself. A few unstarred sections make use of
these dual eigenfunctions in the interest of brevity and maximum general-
ity; uninterested readers may simply eliminate the overbars, since in the
absence of rotation the eigenfunctions and their duals coincide: § = s.

We are deeply indebted to many colleagues for their generous support
and assistance during the preparation of this book. First and foremost, we
would like to thank Freeman Gilbert for his barrage of encouraging e-mails,
filled with valuable commentary upon a variety of topics—ranging from the
inherent positivity of the group speed to the application of ray theory to
stealth-aircraft detection. We also wish to express our sincere gratitude to
Guust Nolet, whose detailed and constructive criticism, particularly of the
appendixes, was extremely helpful. An early, incomplete draft was reviewed
by Brian Kennett, Guy Masters and Barbara Romanowicz; they suggested a
number of improvements which have been incorporated in the final version.
Several people graciously complied with our request to read a particular
chapter devoted to their field of expertise; we especially wish to thank
Henk Marquering and Roel Snieder for their remarks regarding Chapter 11,
Li Zhao for his careful review of Chapter 12, and Colin Thomson for his
advice on Chapter 15. Appendices B and C on ordinary and generalized
spherical harmonics are based in part upon lecture notes by George Backus
and John Woodhouse. Further suggestions for improvements and additions
were provided by Chris Chapman, Adam Dziewonski, Andy Jackson, Paul
Richards, and Philippe Lognonné. Our foray into the early German surface-
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wave literature was aided by Thomas Meier. Finally, we would like to
acknowledge our indebtedness to Miaki Ishii, whose thorough review of the
entire manuscript is very much appreciated.

We are grateful to many individuals for helping us to assemble the more
than 225 illustrations. The theoretical spectra and seismograms and eigen-
function and Fréchet kernel plots were almost all produced by students in
Jeroen Tromp’s global seismology courses at Harvard and MIT. We thank
John He, Yu Gu, Rishi Jha, Hrafnkell Kirason, Erik Larson, Xian-Feng
Liu, Jeff McGuire, Meredith Nettles, Frederik Simons and Mark Taylor for
their help in this endeavor. A number of colleagues, including Goran Ek-
strém, Guy Masters, Joe Resovsky, Mike Ritzwoller, Barbara Romanowicz,
Genevieve Roult, Peter Shearer, Zheng Wang, Shingo Watada, Ruedi Wid-
mer and Li Zhao, provided us with additional figures; we sincerely thank
them all. Most of the cartoons were ably drafted from our slapdash sketches
by Dearbhla McHenry and Leslie Hsu; the indispensable Leslie also orga-
nized, re-sized, touched-up and unified all of the figures for encapsulation
into the final camera-ready copy.

The labor of composing, formatting and typesetting this behemoth of
more than 1000 pages and 3800 numbered equations was ameliorated by
ITEX, BIBTEX and Makelndez; we benefitted from the expertise of Bob Fis-
cher and Erik Larson. Meredith Nettles and Yu Gu indulged our paranoia
by religiously backing up all of the chapter and figure files. It has been
a pleasure working with the capable staff at Princeton University Press,
particularly Jack Repcheck, who has guided this book to publication from
the outset, and Jennifer Slater, who did a splendid job of copy editing.

The awards of a John Simon Guggenheim Memorial Foundation Fellow-
ship to Tony Dahlen and a David and Lucile Packard Foundation Fellowship
to Jeroen Tromp are greatly appreciated. In addition, Tony Dahlen would
like to express his sincere thanks to Raul Madariaga, Jean-Paul Montagner
and Philippe Lognonné for their support and gracious hospitality during
his 1993-1994 sabbatical leave at the Institut de Physique du Globe de
Paris. A preliminary draft of Part I was completed and the remainder of
the book was outlined during this visit. Further financial support was pro-
vided by grants from the National Science Foundation to the two authors
at Princeton and Harvard.

Finally, we would like to thank Elisabeth, Tracey and Alex for patiently
putting up with our seismological gibberish and preoccupation with this
project during the past five years. The fact of the matter is that we should
be grateful that they put up with us at all.

Princeton and Cambridge
June 1998
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Chapter 1

Historical Introduction

After every major earthquake, the Earth rings like a large bell for several
days. These free oscillations of the Earth are routinely detected at mod-
ern broad-band seismographic stations, which are now distributed globally.
The eigenfrequencies and decay rates of the vibrations can be measured and
used to constrain the radial and lateral distribution of density, seismic wave
speed and anelastic attenuation within the interior. The observed ampli-
tudes and phases can likewise be used to infer the origin times, hypocentral
locations, seismic moments, and fault geometries of the earthquakes respon-
sible for the excitation. The analysis of the free oscillations of the Earth
and the allied normal-mode methods employed in the determination of the
Earth’s internal structure and the source mechanisms of earthquakes—the
topics considered in this book—constitute one of the cornerstones of quanti-
tative seismology. Excellent reviews which summarize the state of progress
at two pivotal points in the development of the field are provided by Stone-
ley (1961), Lapwood & Usami (1981) and Buland (1981). This introduc-
tion contains our own brief historical survey of research on terrestrial free
oscillations and the associated propagating surface waves, focusing upon
the theoretical and observational advances made prior to 1985. More re-
cent developments are described—with little attention to their historical
context—in subsequent chapters of the book.

1.1 Early Theoretical Studies
The theoretical analysis of the Earth’s normal modes was initiated over
one and one-half centuries ago by the French mathematician Poisson. In

a remarkable memoir presented to the Paris Academy of Sciences in Au-
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4 CHAPTER 1. HISTORICAL INTRODUCTION

gust 1828, he developed a general theory of deformation for solid materials,
based upon “la considération des actions mutuelles de leurs molécules”,
and applied it to a large number of special elastostatic and elastodynamic
problems, including the determination of the frequencies of the purely ra-
dial oscillations of a homogeneous, non-gravitating sphere (Poisson 1829).
These investigations, together with the work of his contemporaries Navier
and Cauchy, laid the foundations for the modern theory of linear elastic-
ity. The equations of equilibrium and vibration derived by Poisson are now
recognized to be incomplete, inasmuch as they characterize the elastic re-
sponse of an isotropic solid in terms of a single elastic parameter rather
than two; the radial-mode eigenfrequencies and eigenfunctions he obtained
are, however, correct in the special case that we now refer to as a Poisson
solid, which has k = % 1, where & is the incompressibility and p is the rigid-
ity. Not being a physicist or natural philosopher, Poisson did not seek to
estimate or calculate the numerical free periods of radial vibration of the
Earth or any man-made spherical objects, but rather expressed his final
results in terms of dimensionless ratios.

The first numerical estimate of a vibrational eigenfrequency of the Earth
was made by Lord Kelvin in 1863. The prevailing opinion of most geologists
and geophysicists at the time was that the Earth was completely molten,
except for a thin crust of solid rock. Supporting evidence for this con-
clusion included the good agreement of the observed ellipticity of figure
with the hydrostatic theory of Clairaut, the rapid increase of temperature
with depth in mines, and the eruption of lava from active volcanoes. Seek-
ing to challenge this view, Kelvin calculated the fundamental degree-two
spheroidal-mode eigenfrequency of the Earth using two different assump-
tions (Thomson 1863a). For a self-gravitating fluid Earth he found the
period of this mode—now designated ¢S;—to be 94 minutes, whereas for
a solid Earth having the same rigidity as steel he asserted that the period
would be approximately 69 minutes. The first value was obtained by means
of an exact dynamical analysis for a homogeneous, incompressible (x = 00)
fluid (u = 0) sphere (Thomson 1863b), whereas the second was estimated
on the basis of the time required for a shear wave to transit the diameter,
using a laboratory value for the rigidity of steel obtained from his brother
James in Glasgow. Lacking a means to measure the terrestrial eigenfre-
quencies, Kelvin devised an ingenious procedure for determining the mean
rigidity of the Earth based upon the height of the fortnightly and monthly
tides. He noted that the gravitational attraction of the Moon and Sun must
raise bodily tides within the solid Earth as well as the tides within the
oceans familiar to all seafarers, and pointed out that the observed oceanic
tides, which are measured with respect to the deformed seafloor, should
be nearly zero on a molten Earth. He determined the elastic-gravitational
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response of a homogeneous, incompressible solid sphere to an applied tidal
potential, and showed that the oceanic tides on an elastic Earth should be
reduced relative to their equilibrium value on a rigid Earth by an amount
n = (191/2pga)(1 + 1912/2pga) ™!, where p is the density, a is the radius,
and g is the surficial acceleration of gravity. Since Kelvin’s analysis was
quasi-static, this elastic-Earth reduction factor could not be applied di-
rectly to the dominant semi-diurnal and diurnal tides; however, he argued
that it should be applicable to the fortnightly and monthly tides, since they
are largely devoid of ocean-basin resonance. The available fortnightly and
monthly observations were insufficiently accurate for his purpose; accord-
ingly, he persuaded the British Association to establish a Tidal Committee
charged with “the evaluation of the long-period tides for the purpose of an-
swering the question of the Earth’s rigidity”. The harmonic analysis of 66
years of tidal observations from fourteen British, French and Indian ports
was undertaken by George Darwin, who published his results in the sec-
ond edition of the Treatise on Natural Philosophy (Thomson & Tait 1883).
Averaging the results from all poits and both tides, Darwin found that
n = 0.676 & 0.076, indicating that the tidal-effective rigidity of the Earth is
indeed “about equal to that of steel”. This celebrated conclusion corrobo-
rated Kelvin’s 69-minute estimate of the period of the (S, mode, grounding
it upon a measured physical property of the Earth.

An early theoretical investigation of the toroidal modes of a homoge-
neous sphere was undertaken by Jaerisch (1880); however, the first com-
prehensive treatment of the free oscillations of a non-gravitating sphere is
the classic analysis of Lamb (1882). He distinguished clearly between the
spheroidal oscillations, which he called “vibrations of the first class”, and
the toroidal oscillations, which he called “vibrations of the second class”,
and concluded that the period of the ¢S; mode for a steel sphere the size of
the Earth should be 65 minutes in the case kK = co and 66 minutes in the
case K = % i. The good agreement with Kelvin’s order-of-magnitude esti-
mate is to some extent coincidental, since Lamb used an improved, slightly
higher value for the rigidity u of steel; the insensitivity to the value of
the incompressibility x is a consequence of the fact that the ellipsoidal de-
formation is dominated by shear. Lamb conducted his analysis in terms
of three-dimensional Cartesian coordinates; however, it was subsequently
shown by Chree (1889) that the same results could be obtained much more
economically using spherical polar coordinates. Such a spherical-harmonic
representation of the elastic-gravitational deformation of the Earth has been
employed in the majority of theoretical analyses ever since.

The proximity of the two rigorously derived periods—94 minutes for
a fluid sphere whose only restoring force is the mutual gravitation of its
parts and 65 minutes for a Poisson-solid sphere devoid of gravitational



