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Preface

Mathematics is a language.
The whole is simpler than its parts.
Anyone having these desires will make these researches.

—1J. Willard Gibbs

This monograph is mainly based on the author’s recent work on vector analysis
and dyadic analysis. The book is divided into two main topics: Chapters 1-6
cover vector analysis, while Chapter 7 is exclusively devoted to dyadic analysis.
On the subject of vector analysis, a new symbolic method with the aid of a sym-
bolic vector is the main feature of the presentation. By means of this method,
the principal topics in vector analysis can be developed in a systematic way. All
vector identities can be derived by an algebraic manipulation of expressions with
two partial symbolic vectors without actually performing any differentiation. In-
tegral theorems are formulated under one roof with the aid of a generalized
Gauss theorem. Vector analysis on a surface is treated in a similar manner. Some
basic differential functions on a surface are defined; they are different from the
surface functions previously defined by Weatherburn, although the two sets are
intimately related. Their relations are discussed in great detail. The advantage
of adopting the surface functions advocated in this work is the simplicity of for-
mulating the surface integral theorems based on these newly defined functions.

The scope of topics covered in this book on vector analysis is comparable
to those found in the books by Wilson [21], Gans [4], and Phillips [11]. However,
the topics on curvilinear orthogonal systems have been treated in great detail.
One important feature of this work is the unified treatment of many theorems
and formulas of similar nature, which includes the invariance principle of the
differential operators for the gradient, the divergence, and the curl, and the re-
lations between various integral theorems and transport theorems. Some quite
useful topics are found in this book, which include the derivation of several iden-
tities involving the derivatives of unit vectors, and the relations between the unit
vectors of various coordinate systems based on a method of gradient.

vii



viit Preface

Tensor analysis is outside the scope of this book. There are many ex-
cellent books treating this subject. Since dyadic analysis is now used quite fre-
quently in engineering sciences, a chapter on this subject, which is closely related
to tensor analysis in a three-dimensional Euclidean space, may be timely.

As a whole, it is hoped that this book may be useful to instructors and
students in engineering and physical sciences who wish to teach and to learn vec-
tor analysis in a systematic manner based on a new method with a clear picture
of the constituent structure of this mature science not critically studied in the
past few decades.
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CHAPTER 1

Vector Algebra

1-1 REPRESENTATIONS OF VECTOR FUNCTIONS

A vector function has both magnitude and direction. The vector functions which
we encounter in many physical problems are, in general, functions of space and
time. In the first five chapters, we discuss only their characteristics as functions of
spatial variables. Functions of space and time are covered in Chapter 6 dealing
with a moving surface or a moving contour.

A vector function is denoted by F. Geometrically, it is represented by a line
with an arrow in a three-dimensional space. The length of the line corresponds
to its magnitude, and the direction of the line represents the direction of the vec-
tor function. The convenience of using vectors to represent physical quantities
is illustrated by a simple example shown in Fig. 1-1 which describes the motion
of a mass particle in a frictionless air (vacuum) against a constant gravitational
force. The particle is thrown into the space with an initial velocity v, making
an angle 6, with respect to the horizon. During its flight, the velocity function of
the particle changes both its magnitude and direction, as shown by v,, v, etc.,
at subsequent locations. The gravitational force which acts on the particle is as-
sumed to be constant, and it is represented by F in the figure. A constant vector
function means that both the magnitude and the direction of the function are
constant, being independent of the spatial variables, x and z in this case.

The rule of the addition of two vectors a and b is shown geometrically by
Fig. 1-2 (a), (b), or (c). Algebraically, it is written in the same form as the addi-
tion of two numbers of two scalar functions, i.e.,
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z=x(1—i)tan00

o

1
o = —vg sin 26p
g

g = gravitational constant

Fig. 1-1 Trajectory of a mass particle in a gravitational field showing the velocity v and the
constant force vector F at different locations.

c=a+b. (1.1)
The subtraction of vector b from vector a is written in the form
d=a-bh. (1.2)
b
C
a
C a
b

(a) (b) (c)
Fig. 1-2 Addition of vectors,a+ b =c.

Now, —b is a vector which has the same magnitude as b, but of opposite
direction; then (1.2) can be considered as the addition of a and (—b). Geomet-
rically, the meaning of (1.2) is shown in Fig. 1-3. The sum and the difference of
two vectors obey the associate rule, i.e.,

at+tb=b+a (1.3)
and
a—-b=-b+a. (1.4)

They can be generalized to any number of vectors.
The rule of the addition of vectors suggests that any vector can be consid-
ered as being made of basic components associated with a proper coordinate
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Fig. 1-3 Subtraction of vectors, a — b = d.

system. The most convenient system to use is the Cartesian system or the rect-
angular coordinate system. The spatial variables in this system are commonly
denoted by z,y, 2. A vector which has a magnitude equal to unity and pointed
in the positive z direction is called a unit vector in the z direction and is denoted
by u,. Similarly, we have u,, u,. In such a system, a vector function F which, in
general, is a function of position, can be written in the form

F = Fyu; + Fyuy + Fyu,. (1.5)

The three scalar functions F;, F, F, are called the components of F in the di-
rection of uz, u,, and u,, respectively, while F,u,, F,u,, and F,u, are called
the vector components of F. The geometrical representation of F is shown in
Fig. 1-4. It is seen that F,, F,, and F, can be either positive or negative. In Fig.
1-4, F; and F, are positive, but F,, is negative.

z

4

F -]
Fou, /fl‘ B

T

Fig. 1-4 Components of a vector Cartesian system.

In addition to the representation by (1.5), it is sometimes desirable to ex-
press F in terms of its magnitude, denoted by |F|, and its directional cosines,
ie.,

F = |F|(cos au, + cos Bu, + cosyu,). (1.6)

za, B, and v are the angles which F makes, respectively, with u,, u,, and
u,, as shown in Fig. 1-4. It is obvious from the geometry of that figure that

[F| = (F2+ F2 + F?) (1.7)

1
2
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and
F, F, F,
cosa = —,co08 3 = =%, C087Y = —. (1.8)
|F| || |F|
Furthermore, we have the relation
cos?a + cos? § + cos®y = 1. (1.9)

In view of (1.9), only two of the directional cosine angles are independent. From
the above discussion, we observe that, in general, we need three parameters to
specify a vector function. The three parameters could be F;, Fy, and F;, or |F|
and two of the directional cosine angles. Representations such as (1.5) and (1.6)
can be extended to other orthogonal coordinate systems which will be discussed
in a later chapter.

1-2 PRODUCTS AND IDENTITIES
The scalar product of two vectors a and b is denoted by a - b and it is defined by
a-b=|a||b|cosf (1.10)

where 6 is the angle between a and b, as shown in Fig. 1-5. Because of the
notation used for such a product, sometimes it is called the dot product. By
applying (1.10) to three orthogonal unit vectors u;, uz, uz, one finds

u,.-uj={(1): 22} i,j=1,2,3. (1.11)

The value of a - b can also be expressed in terms of the components of a and b
in any orthogonal system. Let the system under consideration be the Cartesian
system, and let ¢ = a — b; then

lc|? =|a—Db|* =|a* + ib)® - 2]a| |b]| cosb.
Hence,
|al* + [b* — |a — b?

a-b = |a]|b|cosf =

2
_aita+al+bl+0) +0% - (as —b,)% — (ay — by)? — (@, — b,)*
2
= azb, + ayby, + ab,. (1.12)
By equating (1.10) and (1.12), one finds
cosf = 1 (azby + ayby + azb,)

|al |b]

= COS (g COS Oty + €08 3, cos By + €08 Y, COS Yp, (1.13)
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a relationship well known in analytical geometry. Equation (1.12) can be used
to prove the validity of the distributive law for the scalar products, namely,
(a+b)-c=a-c+b-c (1.14)
According to (1.12), we have
(a+b)-c =(a; +b)ce + (ay +by)cy + (a; +b)c,
= (@zcz + aycy + a,c;) + (bzes + bycy + bec2)
=a-c+b-c

Once we have proved the distributive law for the scalar product, (1.12) can be
verified by taking the sum of the scalar products of the individual terms of a and

b.
b
L
a
Fig. 1-6 Scalar product of two vectors, a - b = |a|[b| cos .

The vector product of two vector functions a and b, denoted bya x b, is
defined by
a x b = |a] |b|sin fu, (1.15)

where 6 denotes the angle between a and b, measured from a to b; u, denotes
a unit vector perpendicular to both a and b and is pointed to the advancing
direction of a right-hand screw when we turn from a to b. Figure 1-6 shows the
relative position of u,. with respect to a and b. Because of the notation used for
the vector product, it is sometimes called the cross product, in contrast to the dot
product or the scalar product. For three orthogonal unit vectors in a right-hand
system, we have u; x u; = u3,uz x uz = uy, and uz x u; = u,. It is obvious
that u; x u; = 0,7 = 1,2,3. From the definition of the vector product defined
by (1.15), one finds

bxa=-axb. (1.16)

The value of a x b as described by (1.15) can also be expressed in terms of the
components of a and b in a Cartesian coordinate system. If weletax b = v =
vz Uy + vyuy + v, u,, which is perpendicular to both a and b, then

a-v = azv; +ayv, +a,v, =0 (1.17)
b-v = byv; + byvy + bv, =0. (1.18)
Solving for v /v, and v, /v,, from (1.17) and (1.18) we obtain

Uz _ ayb; —ab, v, a,b, —azh,

U agby —ayby’ v, azby —ayb,
Thus,

'Ux vy Uy

ayb; —azby ab; —azb, azb, —ayb,
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Let the common ratio of these quantities be denoted by ¢, which can be deter-
mined by considering the case with a = u;,b = u,; thenv = a x b = u,;
hence, from the last ratio, we find ¢ = 1 because v, = 1 and a; = b, = 1 while
a, = b, = 0. The three components of v, therefore, are given by

vy = ayb, —aby
vy ab, —azb, (1.19)
v, azby, — ayb;

which can be assembled in a determinant form as

u u, u
v=|a; ay a, (1.20)
b, by, b,
We can use (1.20) to prove the distributive law of vector products, i.e.,
(a+b)xc=axec+bxec. (1.21)

To prove (1.21), we find that the z component of (a + b) x ¢ according to (1.20)
is equal to

(ay +by)c: — (az+b2)cy
= (ayc; — azcy) + (byc, — bycy). (1.22)
The last two terms in (1.22) denote, respectively, the  component of a x ¢ and
b x ¢. The equality of the y and z components of (1.21) can be proved in a

similar manner.
axb

Uc

a

Fig. 1-6 Vector product of two vectors, a x b = |a|{b|sinfuc; uc L a, uc 1L b.

In addition to the scalar product and the vector product introduced before,
there are two identities involving the triple products that are very useful in vector
analysis. They are

a-(bxc)=b-(cxa)=c-(axb) (1.23)
ax(bxc)={a-c)b—(a-b)c. (1.24)

Identities described by (1.23) can be proved by writing a - (b x ¢) in a determi-
nant form:

a a2 as
by b2 b3
€t C2 C3

a-(bxe)=




