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Preface

The computer has become the laboratory tool of the theoretical scientist.
With it he hopes to learn new things which were previously inaccessible, in
very much the same way as an experimentalist employs a piece of equipment.
This hope depends to a large extent on the development of new methods
designed specifically for the computer. The major aim of this series of books
is to collect these techniques which were developed in the solution of physical
problems,

The theoretical advances which can be made by this new tool appears to be
enormous and in many different areas of science. In chemistry and physics,
for example, many of the theoretical problems that are faced aré mathematical
in nature, the physical laws being well established. If, for example, the
Schroedinger equation could be solved for more than two particles, molecular
chemistry would become quantitative. To solve such problems, the first
tendency is to transfer the well established techniques from the desk calculator
to the high speed computer. In this way much can be learned by obtaining
more accurate and extensive solutions. Alternatively, however, new methods
should be thought about which are made practicable only by having access to
a machine able to perform arithmetic at high speeds. It is the development of
these new methods which we would particularly like to encourage in this series,

It is for this reason that our first volume covers mainly various aspects of
the Monte Carlo method. This method is only suited for a high speed computer
and permits the accurate numerical solution of many problems which are only
approximately soluble by analytical techniques. In fact, the method was used
in one of the first applications of computers, namely, the scattering of neutrons
by a wall. Chapters 2 through 5 in this volume give the more recent applications
and methods to the scattering of various particles. Chapter I, by way of contrast
gives a competing method for solving the neutron transport problem. The last
three chapters are concerned with application of the Monte Carlo method to
problems in statistical mechanics. There are many more applications involving
variations on the Monte Carlo method and it is hoped that another volume in
the future will be devoted to these.

In the effort to make computers a more useful tool to the physical scientist,
we feel it desirable to complement the scientific journals by reversing the
emphasis between computational detail and physical results, This is because
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viii PREFACE

scientific journals, owing to space limitation, discourage detailed exposition of
numerical techniques, even though these techniques are time consuming to.
develop, and frequently crucial to the solution of the problem. The policy
has thus been established that a typical article would contain a statement of
the physical situation in which the problem arose, previous analytical attempts,
if any, for its solution, numerical techniques which were used (even those
that were unsuccessful), a flow diagram if the problem is of general interest, .
the advantage and limitation of the method, the memory requirements of the
program, the accuracy and convergence of the method and how they were
ascertained, description of the numerical results, and so on. :

It is hoped that the detailed description of techniques will lead to the develop-
ment of even better techniques. By pooling experiences it should also lead to
more efficient use of computers. Furthermore, we hope to expose those as yet
not familiar with computers to the power of these tools. The results also ought
to impress the skeptics who like to employ only analytical methods. Numerical
solutions are never as general and as compact as analytical solutions. Never-
theless, the two methods complement each other in that a numerical solution
tabulates a function in terms of which other problems can then be analytically
expressed and, conversely, much analysis has to be done before a new numerical
method is developed. ' '

Much progress and activity can be expected in this field now that large
computers have become generally available. In the next volume we hope to
collect recent numerical advances in the field of quantum mechanics. The
subsequent volume will be devoted to the field of hydrodynamics. '

BERNI ALDER :
SibNey FERNBACH
MANUEL ROTENBERG
April 1963
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I. Introduction

A. GENERAL PRINCIPLES

The basic relations in neutron transport theory derive from simple
statements regarding continuity of neutron flow and numerical balance
of the number of particles involved. Neutrons moving into {leaving]
a region D of space are also, at the instant they cross the boundaries
of D, leaving [moving into] adjoining regions. The neutron properties:
number, direction of motion, and velocity are not altered in the process.
Continuous flow implies, then, the absence of interference at boundaries.
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2 BENGT G. CARLSON

Statements of balance, for D during a time 4t, for example, equate
change in neutron population to gains minus losses. Such statements
are usually made for a set of neutron beams, each beam having a fixed
direction and velocity. Neutrons flowing into D and those released by
sources in D constitute the gains. Neutrons flowing out of D and those
removed by the material in D make up the losses. By removals we really
mean events leading to beam attenuation, that is, collisions between
neutrons 2nd the nuclei of the material. There are no collisions in D if
D is in a vacuum. The rectilinear motion of neutrons between collisions is
referred to as streaming.

It is assumed that very large numbers of neutrons are involved so
that only their average behavior is of concern, and not the departures
from that average. Also, in general, one can neglect neutron-neutron
interactions entirely, which means that the neutrons flowing through a
region D need not be counted as part of the material in D. This has
the very important consequence that the equations for neutron transport
are linear and thus much more amenable to solution than are the non-
linear equations found for particle movement in gases or plasmas.

Sources may be of the surface type, neutrons per unit area per unit
time, or of the volume type, neutrons per unit volume per unit time.
Familiar surface sources are sources incident on the outer boundaries
of systems (configurations, arrangements of materials) under study. In
numerical treatment, surface sources are placed in the immediate vicinity
of boundaries rather than right on them. This is in order to make it
clear to what region they belong. Commonly occurring volume sources
are the reemission sources, for example, the neutrons which after collision
emerge scattered. Collisions are permitted to change the properties of
the neutrons, that is, their number, direction, and velocity. A collision
without change is not generally counted as a net collision. In combination,
collision and velume source terms provide the mechanism for transferring
neutrons between the various neutron beams of fixed direction and
velocity. Sources external to a system, in time or space, are usually
labeled initial values, or bouridary vilues, respectively.

It is further assumed that the materials in the system are specified
with respect to macroscopic properties, such as location, density, and
isotopic composition, and with respect to microscopic character including
interactions with neutrons, such as capture cross section, scattering
cross section, and fission cross section. The cross sections depend on
the velocity of the incident neutron as well as on the isotope with which
the neutron interacts. The cross-section data are often given as functions
of energy or lethargy rather than velocity, and include data about the
released neutrons, that is, data about number (zero in the event of
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capture), velocity, and deflection cosine. Together, this information is
used to calculate transfer cross sections which after multiplication by a
density factor become transfer probabilities (macroscopic cross sections)
in terms of events, such as captures, per unit length of neutron travel.

To supply a program of calculation with transfer cross sections is a
considerable undertaking in view of the various difficulties with the
basic data and the rather elaborate processing requ1red The cross
sections often exhibit a complex resonance structure in energy and also
correlation between energy and deflection angle in scattering. The
precision of the experimental data is varying and seldom entirely
adequate: In some areas data are entirely lacking.

The basic problem in the processing of cross sections is that of
reducing continuous and often complicated sets of data to relatively
small sets, without losing significantly in realism in the description
- of materials and their interactions with neutrons.. The averaging rules,
which one sets up and follows, inevitably make broad assumptions about
the applications one has in mind, in particular about the neutron
spectrum in energy which one expects within velocity groups. With sets
of transfer cross sections are associated, therefore, statements specifying
under what general conditions they may be applicable.

The cross-section compilations for the elements in the periodic table
are updated from time to time as new or better data accumulate (Hughes
and Schwartz, 1958; Argonne National Laboratory, 1958). An increasing
number of cross sections are calculated from nuclear models. Also,
the techniques for preparing the basic data for use in computation are
advancing. Nevertheless, the cross-section problem in transport cal-
culations remains a serious one. It should always be given careful
attention.

Finally, it is assumed here that the materials in the configuration are -
at rest and have properties constant in time, or rather, that changes
in these areas, if any, are relatively slow so that the combined problem,
‘neutron transport with material changes, can be replaced by two problems
- interleaved in time: neutron transport for a short time with fixed
material, change of material as indicated by motions, collisions, etc.,
during that time; then neutron transport for the next time cycle, another
change of material, and so forth.

B. COMMENTS ON DEVELOPMENT OF THEORY

Transport theory has developed quite swiftly during the last two
decades. Much of the stimulus for the development came from problems
connected with the design and operation of nuclear reactors. Methods
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from mathematical analysis were the main tools during the early period.
Important basic results were obtained then by S. Chandrasekhar, in
connection with the study of radiation flow in stellar atmospheres, and
by G. Placzek and co-workers (among them B. Davison) in the Montreal
group, mainly concerned with neutron problems. Many of the develop-
ments occurred during the time of World War II, in widely separated
places at about the same time. ‘

The general objective in transport theory is the determination of
neutron flux, i.e., neutron flow per unit time, across unit area, from
a difference or differential equation and as a function of time, position
in space, direction in space, and neutron energy.

The analytical techniques first used did not really suffice—the problems
were usually too complex—but helped along by simplifying assumptions,
by ingenuity and innovation, and by judicious choice of calculations,
the techniques proved quite effective in a variety of problems and over
many years. They created, in fact, a large number of main topics within
transport theory: Simple diffusion theory, Spherical harmonics, Age
theory, Serber-Wilson technique, Integral theory, and several others.
As the problems increased in complexity the analytical approach became
increasingly strained. But then—and to some extent as a consequence—
the high-speed computer emerged on the scene. With this revolution
in computation, the emphasis shifted to numerical methods, first to
methods effective within the separate topics of the theory, and then,
somewhat later, to methods attacking the problem of transport directly,
starting from first principles. Numerical methods are now clearly the
most versatile tools in the field, provided that means of rapid computa-
tion are fairly accessible.

It is quite clear that many results in transport theory related to the
existence of solutions, asymptotic behavior, series expansions, etc., and
obtained by analytical means, cannot readily be deduced from difference
equations or by the use of difference methods. For this and other
obvious reasons, analytical and semianalytical methods will continue to
play important, although somewhat changed roles in the theory. They
remain important in the numerical context to help answer, for example,
these basic questions: How do numerical results depend on the fineness
of resolution specified for the variables ? How do the various numerical
methods compare? Analytical and numerical methods, separately,
provide some, usually not very precise answers. Results from physical
experiments, on the other hand, such as critical assemblies, are often
compared as follows: experimental results to theoretical results to
cross-section data used. This comparison is most often used to modify
the cross sections until experiment and theoretical model come to



THE NUMERICAL THEORY -OF :NEUTRON TRANSPORT 5

reasonable agreement, a use which is quite sensible, generally, but
precludes help with the questions just posed. Comparisons between
numerical and analytical results for simple problems, where both sets
of results can be obtained, remain, therefore, among the better means
for gaining information about resolution and for judging numerical
methods. Chandrasekhar (1960), Davison (1957) and Case et al. (1953),
to mention only a few of the analysts, provide numerous opportunities
along these lines.

A few basic numerical techmques and most of the methods for
simplifying problems and theoretical description were introduced in the
early period. The discrete method for handling neutron flux as a function
of direction was introduced then. This method was first suggested by
G. Wick but was mainly developed by S. Chandrasekhar (see Davison,
1957, pp. 174-182). Variations on it appeared later, an important one
is from J. Yvon (see Davison, 1957, pp. 171-173). Early efforts in sim-
plification produced the special topics within transport theory as
mentioned previously and also the first methods for eliminating variables,
processing cross sections, treating scattenng laws, etc.

The main object of this article is to give the most general formulation
poss1ble at this time of a numerical theory of neutron transport. From
this is derived a general method for solving neutron transport problems
numerically, a method around which particular procedures, the topics
of numerical transport theory, may group or develop. The basic difference
equation of the theory will be derived directly from the principles and
assumptions stated at the beginning.

Since the discrete representation eof direction remains, the general
formulation and method may be regarded as a generalization of the
Wick-Chandrasekhar method. It is usually called the discrete S, method
or simply S, for convenience and in reference to the first formulation
which made the generalization possible. An effort has been made to
include here the main information needed for the planning and flow
diagramming of S, calculations and codes, and also, either directly or
indirectly through the references given, some ‘guidance to what else is
required in actual calculations.

II. Coordinate Sysfems

A. GENERAL DESCRIPTION

- The later discussion of difference equations will be made in relation
to three familiar and basic space symmetries, rectangular, cylindrical,
and spherical. The left-side diagrams of Fig. 1 illustrate the coordinate
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systems corresponding to these symmetries. They name the variables
of position (r) and direction (), specify the components of the former,
and relate these, in the cylindrical and spherical cases, to the rectangular
coordinates x, y, and 2. Shown also, in each left-side diagram, is a
sample neutron path starting at position r (at point P) and extending
some distance (4s) in the direction Q.

'fonggnt
(to §-circle)

tangent
(to $~circle)

2
£
g A

tangent
(to 8-circle)

l.-_......__..._.
-
®

Fic. 1. Coordinate systems; fixed and local frames of reference for rectangular,
cylindrical, and spherical symmetries. (Symbols with arrows correspond to boldface
symbols in text, and g, 5, and ¢ denote cosines.)

In the diagram to the right, again referring to Fig. 1, the components
@ 1, and ¢ of the unit vector & are shown. These are measured with
respect to a local frame of reference with origin at P, thereby forming
a coordinate triplet for specifying direction. The local reference system
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is lined up with the intersecting tangents touching the space coordinate

lines, i.e., the grid lines passing through P. It is clearly a rectangular

system since the basic geometries we are dealing with are orthogonal.

The components of £ obey, therefore, the relation p? 4 9% 4 £ = 1.
One usually selects one of the components, say p, as one of the indepen-

dent variables, and writes the others, 7 and &, in terms of w, a second
one, as follows: 2 = (1 — p?®)sin? w and §2 = (1 — ;ﬁ) cos? w

“The local frame of reference is here regarded as a.moving one, attached
to the neutron beam and moving with it along a straight line path.
Since this frame is also tied to a space-coordinate system, it may change
in orientation as it moves, and generally does this in cylindrical and
spherical systems where the space coordinates are curvilinear. Neutrons
in the process of streaming must therefore be permitted to change
direction coordinates. This is beam attenuation quite apart from that
provided by the mechanism of collision discussed earlier. The process
will be called angular redistribution. It shifts neutrons in direction
cosine; for descriptive purposes really, without affecting their number,
basic direction, or velocity. It is the expression of continuity of flow
unaffected by changes of variable.
~ Directions may be depicted as points on the surface of a unit sphere.
In what follows it may be useful to refer to Fig. 2, which shows octants
of unit spheres, and to Fig. 4, which shows the upper front quadrant
of one, in perspective. In rectangular coordinate systems no change of
direction cosines is possible during streaming. In cylindrical systems,
neutron movement causes higher values of u always with  first increasing
while p remains negative and then decreasing; ¢ is uneffected. In
spherical systems of full symmetry, i.e., in systems without ¢ and ¢
variation, the shift is also toward higher u. In the general case, however,
this pattern is combined with another one: a shift toward smaller values
of w if ¢ is positive, toward higher values if ¢ is negative.

There are some special points and lines (great circles) on the unit
sphere. In the cylindrical case there is no angular redistribution along
the line 7 = 0 and none into or out of directions having 3 = 0. In
the spherical case there is no flow into or out of the directions p = +1
and no flow into or out of other directions with = 0 except by redistri-
bution along the line 4 = 0. The neutron flux can readily be caiculated
for these special directions, a fact that will be made use of later.

B. MEsH Systems IN TIME AND SPACE

In numerical treatment, discrete variables take the place of continuous
ones and vary over domains that are finite sequences rather than inter-
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vals. Thus the time variable ¢ in our case is assumed to take on the
values #,, where s = Q, 1, 2, ..., the elements of the sequence {z,}, with
steps Adt, = t, —t,_,, where s = 1,23, Similarly, the space
- variable x is assumed to range over x,;, wherei = 0, 1, 2, ..., the elements
of {x.}, with intervals 4x;, etc. We now adopt the followmg conventions,
Time is to be represented by ¢ and the subscript 5, and position by the
coordinate triplets (x, y, 2), (r, 6, 2), or (r, 6, ), as the case may be,
as well as by subscript triplets (%, j, k), with one-to-one correspondence
between elements. Thus, for example, we shall use the terms (r, 2)
geometry and (3, k) cylindrical geometry interchangeably. ,

Many factors enter into the choice of geometry and the selection of
time and space points. The geometry is most often selected on the
basis of the dominating form of the surfaces which define the configura-
tion. Thus, for a right circular cylinder, inside a similar figure and
sharing its axis, with no other forms in sight, one obviously chooses
cylindrical geometry. Pertinent defining surfaces here are those enclosing
the system or separating the materials within it those carrying surface
sources, and those delineating volume sources.

To form a space mesh, that is, to fill all of space with mesh intervals
and simultaneously with mesh points, we let the sets {x;}, {y;}, and {2},
define mutually orthogonal sets of surfaces in space. The mesh interval

TasLe 1

ARea AND VoruMmE ELEMENTS FOR Mzesn CELLS IN RECTANGULAR, CYLINDRICAL, AND
SPHERICAL COORDINATE SYSTEMS.

Geometry and " Areaelements : Volume

variables - 4 B B - C element
Rectangular 7
x 1 dx,
%y : 4y, dx, dx,4y,
Xy, &8 Aydzy . dxdzy Ax Ay, dxdy,dz;,
Cyﬁndrical Ci = ('?u - ’f’)/ 2
- 2z, . _ S 2nC, .
7, [/ Y(AG; . A?‘g : b C;da,
7, 2nr Az e 2y 27C4z2,
7, 0, E ‘r‘AG,Azk Andzk ‘ nAr;AO, . C;AO,AB.
Spherical S; = (3, — 7H/3, Sp = (sin grys — singp)-
r 4ard eee vee 4nS ¢
7, P 21‘""'33 Lo ZWC( COS8 ¢, B 2‘”S4Sg

né ¢ 7240,5, o Cido, C40; cos ¢ 8:40,8:.




