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PREFACE

N this tract I have tried to present the main portions of the theory
of integral equations in a readable and, at the same time, accurate
form, following roughly the lines of historical development. I hope that
1t will be found to furnish the careful student with a firm foundation
~ which will serve adequately as a point of departure for further work in
this subject and its applications. At the same time it is believed that
the legitimate demands of the more superficial reader, who seeks results
rather than proofs, will be satisfied by the precise statement of these
results as italicised, and therefore easily recognized, theorems. The
index has been added to facilitate the use of the booklet as a work of °
reference. |
In these days of rapidly multiplying voluminous treatises, I hope that
the brevity of this treatment may prove attractive in spite of the lack
of exhaustiveness which such brevity necessarily entails if the treatment,
so far as 1t goes, 1s to be adequate.
I wish to thank Professor Max Mason of the University of Wisconsin |
who has helped me with some valuable criticisms; and I shall be grateful
to any readers who may point out to me such errors as still remain.

MAXIME BOCHER.,

Harvard University,

Cambridge, Mass.
November, 1908.

This second edition is a reprint of the first, in which, however, such
errors as have come to my notice have been corrected. Of these the
most serious (on pages 17 and 62-64) were called to my atteh#tion by
Professor D. R. Curtiss and Dr W. A. Hurwitz respectively.

. M. B.
December, 1913. '
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AN INTRODUCTION TO THE STUDY
OF INTEGRAL EQUATIONS

Introduction. The theory and applications of integral equations,
or, as 1t 1s often called, of the inversion of definite integrals, have come
suddenly into preminence and have held during the last half dozen
years a central place in the attention of mathematicians. By an integral
equation® i1s understood an equation in which the unknown function
occurs under one or more signs of definite integration. Mathematicians
have so far devoted their attention mainly to two peculiarly simple
types of integral equations,—the linear equations of the first and second
kinds,—and we shall not in this tract attempt to go beyond these cases.
We shall also restrict ourselves to equations in which only simple (as
distinguished from multiple) integrals occur. This restriction, however,
1s quite an unessential one made solely to avoid unprofitable complica-
tions at the start, since the results we shall obtain usually admit of an
obvious extension to the case of multiple integrals without the intro-
duction of any new difficultiest. In this respect integral equations are
in striking contrast to the closely related differential equations, where
the passage from ordinary to partial differential equations is attended
with very serious complications.

The theory of integral equations may be regarded as dating back at
least as far as the discovery by Fourier of the theorem concerning
integrals which bears his name ; for, though this was not the point of
view of Fourier, this theorem may be regarded as a statement of the
solution of a certain integral equation of the first kindi. Abel and
~ Liouville, however, and after them others began the treatment of
- special integral equations in a perfectly conscious way, and many of
- them perceived clearly what an important place the theory was destined

to fill§.

* The term Integral Equation was suggested by du Bois-Reymond. Cf. Crelle,
- vol. 103 (1888), p. 228.
~» T Another extension, in which serious complications do not usually arise, is to
- 8ystems of integral equations. We do not consider such systems in this Tract.

T Cf. the closing page of this Tract.

§ Cf., besides the article of du Bois-Reymond already cited, some remarks by
Rouché, Paris C. R. vol. 51 (1860), p. 126.

B. . 1



2 PRELIMINARY PROPOSITIONS - [t

As we shall not, except in one relatively unimportant case, take up
any of the applications of the subject, it may be well to say explicitly
that like so many other branches of analysis the theory was called into
being by specific problems in mechanics and mathematical physics. This
was true nqQt merely in the early days of Abel and Liouville, but also
‘more recently in the cases of Volterra and Fredholm. Such applications
of the theory, together with its relations to other branches of analysis*,
are what give the subject its great importance.

1. Some Preliminary Propositions and Definitions. In order
to avold interruptions in later sections, we collect here certain propo-
sitions of the integral calculus for future reference.

We shall have to deal with functions of one and of two variables.
The independent variables, which we will for the present denote by # and
(#, y) respectively, are in all cases real. In fact, in order to avoid
unnecessary complications we will assume that, unless the contrary is
explicitly stated, all quantities we have to deal with are real.

The range of values of the single argument 2 is usually

¥4 a=ax=0>b.

We shall speak of this in future simply as the interval 7.

In the case of functions of two variables, two cases have to be con-
sidered. Interpreting (z, y) as rectangular coordinates in a plane, we
sometimes consider the square

S {aj - b} |

| a=y=b
and sometimes the triangle

T CEJGEa =D

It should be noticed that the three regions we have just defined, 7, S, 7,
are closed regions, that is they include the points of their boundaries.
In order to avoid long circumlocutions we lay down the following

DeFINITION. We say that the discontinuities of a jfunction of (x, )
are reqularly distributed in S or in T if they all lie on a finite number
of curves with continuously turning tangents no one of which is met by
a line parallel to the axis of @ or of y in more than « finite number of
pornts. .

In order to make the enunciation of some of our results simpler, we
will assume once for all that the functions we deal with are defined even

* (Cf., for instance, much of Hilbert’s work.



1] AND DEFINITIONS 3

at the points of discontinuity, at least in the cases where they remain
finite in the neighbourhood of such points.

The following theorem will be important for us. We state 1t first
for the case of the region 8.

TueoreM 1. If the two functions ¢ (2, y) and ¢ (z, y) are finite in
S and their dzscommmtzes, of they have any, are regularly distributed,

the function
b
Fa,y)=| ¢ @ 9v(y)dé

18 continuous throughout S.

The truth of this theorem becomes evident if we mterpret (@, 9, &)
as rectangular coordinates in space. It is then clear that the function

under the integral sign is finite throughout the cube
go=a=b a=y=0b, a=§¢=b,

and becomes discontinuous in this cube only at points on two sets of
cylinders whose generators are parallel respectively to the axes of # and

y. Moreover these cylinders are so shaped that any line =2, ¥ = %,
in this cube meets them at only a finite number of points.—The formal

proof, based on these or similar considerations, presents no difficulty,
and we leave 1t for the reader.

CorROLLARY. If ¢ (2, y) and ¥ (2, y) are finite in T and their dis-
. continuitees, if they have any, are regularly distributed, the function

H(z,9)= | (@89

us continuous throughout T.

This 1s merely a special case of Theorem 1. For if we define ¢ and ¢
to have the value zero everywhere outside of 7', it is clear that they
satisfy the conditions of Theorem 1 throughout S and that the function

I (x, y) reduces to H (2, y).
If ¢ (,y) satisfies the conditions of Theorem 1, the double integral

of ¢ extended over S may be evaluated in either one or two ways as an

1terated integral®* and we thus get the formula
b b

Lb f:tﬁ (@, y) dy da = f ¢ (z,y) dedy.

aJda

If, in particular, ¢ vanishes everywhere outside of 7, we get

* By a double integral we understand the limit of a sum obtained by dividing up
the region in question into pieces both of whose dimensions are small. By an

iterated integral, the integral of an integral.
1—2



4 PRELIMINARY PROPOSITIONS [1

DirrcHLET'S FoRMULA*. [If ¢ is finite in T and its discontinuities,
f it has any, are reqularly distributed, then

f: :9-” (2, y)dy da = Lbf:q‘) (2, y) dzdy.

This formula admits of extension to certain cases in which the -

integrand does not remain finite in 7. The most general case of this
sort which we shall have occasion to use is contained in the following
statement, for a simple proof of which we refer to the first part of a
paper by W. A. Hurwitzt: -

DiricHLET’S EXTENDED ForMULA. [f ¢ (=, y) s finite in T and its
discontinuities, if it has any, are regqularly distributed, and if N, u, v are
constants such that - |

O0=A<l, O0=pu<l, O=v<l,
then ;
f" @y dyde __jb/*’ ¢ (2, y) dady
o Ja (=Y -2 (y—a) J, vy (@=y)*(b-a)m (y—a)y

Finally we turn to some theorems concerning functions of a single

variable,

THEOREM 2. If ¢ (2) is finite and has only a finite number of discon-
tenuities in I, the function |

- _[FP () dE _

® (@)= [ o CURED

18 continuous throughout I, including the point a, where it vanishes 1.
To prove this we introduce the new variable of integration

E—a

r—a

S =

Then

® (2) = ( -a)l—%l b [aai(:‘);“)] ds= (2 —a)'~* ¥ ()

(@<z=<b).

" Cf. Crelle’s Journal, vol. 17 (1837), p. 45. .
t dnnals of Mathematics, vol. 9 (1908), p. 183. This result may also be deduced
from a general theorem of de la Vallée Poussin. Cf. the Cours d’Analyse of this
author, vol. 2, pp. 89—95. | |

. _
T We define the symbol f ¥ (z) de to mean zero, whatever the nature of the =
1/ :

function ¥ may be.
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By replacing ¢ by the upper limit of its absolute value, we see that
¥ () remains finite, and hence that ® approaches zero as # approaches
a. Consequently ® is continuous at @. On the other hand the same
substitution shows that the integral ¥ converges uniformly when
a <z =b. For any fixed positive 8 <1 the function

Téla+s(z—a)
v, (.’U)=f (1 ___Sx),\ dS

is continuous throughout the interval @ <z < b, since the integrand in
¥, 18 finite in the recta,ngle

o<x=b, 0=8=1-03,

and 1s discontinuous only along a finite number of curves in this
rectangle each of which 1s met by a line # =, in at most one point.
Since, as we have just seen, ¥, (2) approaches ¥ (z) uniformly as 8
approaches zero, it follows from a fundamental theorem in uniform
convergence that ¥ (#) is continuous when @ <2 < b, and hence the
same 18 true of ® (#), and our theorem is proved.

TaeorEM 3. If, in I, ¢ (x) is continuous and has a derivative which
18 Jinite and which has at most o finite number of discontinuities in I,

and if ¢ (a)=0, the function

& (z) = f ("”_(?)A (A <1)

has a derwative continuous throughout I and given by the formula

P’ (x) = L ’ (j:—(i)))‘ dé.

- For if we integrate the expression for ® (x) by parts, we have, when
we remember that ¢ (@) =0,

® ()= 1oy | (@- 8 (e

Applying here the rule for differentiating an integral whose limits are
variable, we get the desired expression for @ (). Hence from Theorem
2 1t 1s evident that ®' (#) is continuous. It should be noticed that
~ when A > 0 the integrals with which we have to deal are infinite integrals
- (Le. integrals in which the integrand does not remain finite) so that the
application to them of the ordinary rules of the calculus requires careful

justification.



6 ABEL’S MECHANICAL PROBLEM [1, 2

An alternative form of proof for this theorem consists in applying
Dirichlet’s Extended Formula* as follows :

(b(*x):if (x_._ls).h [5 ¢ (S)db'df:fm(f” () ﬁm (mig_ég)a ds

=], # 0 [ s)hds 1., (s—(S))*def'

The d1fferent1at10n of this last formula gives us the result we wish to

establish t.

In conclusion we point out by means of the following two examples
that if we replace the condition of finiteness for ¢’ by the condition of
integrability, or even of absolute integrability, ® will not always have a,
continuous derivative: |

(1) ¢ (@)= (@z—a) ®(2)=Fk (z - a),
3 0 (a=z=a) __{ 0 (ea=z=ada)
i ) {(x —aW (0 <z =b) W im = k(z—d)(a <x=b)
In both cases % is a positive constant, and if 0 < A <1, ¢ is continuous
in / and has a derivative which is continuous except at one point and

absolutely integrable but not finite. In the first case ®'is continuous, in
the second discontinuous.

2. Abel’s Mechanical Problem. In one of his earliest published
papers } Abel showed how a certain mechanical problem, which includes
the problem of the tautochrone as a special case, leads to what has since
come to be called an integral equation, on whose solution the solution of
the problem depends. On account of its great historical interest, we take

up this problem in this section.
A particle starting from rest at a point 2 on a smooth curve which lies

inavertical plane, slides down the curve to its lowest point O. Theveloeity

* It should be noticed that we use this formula here under slightly different

restrictions on the function ¢ (x, y) since ¢ is now a function of y alone, and
therefore if it is discontinuous at all, is discontinuous along lines parallel to the

axis of zx.
+ This method of reasoning admits of immediate extension to the proof of the

more general formula

d X &£ "
& [ve-vs@a=[ve-nva

which holds under suitable restrictions on .
+ See Collected Works, p. 11. This paper was first published in Christiania in

1823. Of. also a second paper beginning on p. 97 of the Collected Works, and
originally published in Crelle, vol. 1 (1826), p. 153. -
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acquired at O will be independent of the shape of the curve. 'The time
of descent 7" will however depend on this shape. We take O as origin,
the axis of « vertically upward, and the axis of ¥ horizontal and in the
plane of the curve. Let the coordinates of the point of departure P be
(2, y), and the coordinates of the point ¢ reached by the particle at the
time ¢ be (¢,7m), g the gravitational constant,and s the arc O¢. The veloclty
of the particle at @ 1s

ds
'_"'% = \/29 (»’U"“&)
| — Q
Hence N2gt=— | - L
p N -
If we express s in terms of &
s=v (),

the whole time of descent 1s then

o L (o0 (§) d
V2gJlo Na-§€
If the shape of the curve 1s given, the function » may be computed,
and the whole time of descent is given to us as a function of # by the
last formula.
The problem which Abel set himself is the converse of this, namely to

determine the curve for which the time of descent is a given funetlon of
x. If we write

J@ T'=f (@),

our problem 1s to determine the function » from the equation

f @)= [ ).

The formula for the solution of this integral equation was obtained
by Abel by two different methods. The first depends on the use of
series proceeding according to powers, not necessarily integral, of the
argument; while the second, of a more general character, is closely
related to the one we are about to give in the next section. Neither
of Abel’s methods can be regarded as satisfactory although they lead
to the correct result. Among other objections it may be said that both
methods omit the essential step of proving that the equation (1) has a
solution. |
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- 3. Solution of Abel’s Equation*. Instead of the equation (1)
of § 2, Abel set himself the problem of solving a more general equation
which we will write in the form

re= R85 o<a<n

where /' is a known function, » the function to be determined.
In order to solve (1) we begin by establishing the general formula (2)
below. We start from the well-known formula
T o . dx
; = 1).
sin pr fs (2— )+ (z- & RN
Let ¢ (£) be any function which is continuous and has a continuous
derivative throughout Z. Multiply this equation by ¢’ (§) d¢ and
integrate from @ to 2z, which we suppose to be any point of Z. This
gives

= ¥ ¢ (£)
810 pr [ (2) - ¢ (a)] = L[E (Z - ) (2 — 5)# da d.

If we apply Dirichlet’s Generalized Formula to the second member 6f this
equation, we get the desired result

- T (% i d
b () - d (@)= =" L(z—tv)l-# . ((ic(f)s)f aw A

a formula which holds under the sole restrictions that z be in 7, and ¢
be continuous and have a continuous derivative in 7, and that

| O<p<l. | ,
Theorem 2, § 1, shows us at once that a necessary condition that
(1) bave a solution continuous throughout 7 is that f (z) be continuous

throughout 7 and that £ (a) = 0
Let us suppose that these conditions are fulfilled and that « (z) is a

continuous solution of (1). Multiply (1) by (z —2)*~* dz, where z is a
point of Z, and integrate from a to z, thus getting
* f () da F 1 [ u(é)d&

o (=) Jo (=) (2 6)"

If in (2) we let
b(@)= [ u(@d

* Except for the method of deducing formula (2), the method we use is, barring
notation, that of Liouville in Liouville’s Journal, vol. 4 (1889), p. 233. Liouville,
who seems not to have been aware of Abel’s work, had already published on this
subject in the Journal de U Ecole Polytechnique, Cahier 21 (1832), p. 1.
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it will be seen that the preceding equation reduces to °

= d T »

e I L I O
Since the second member of (3) has a continuous derivative with regard
to z, the same must be true of the first member, and this gives us a
further necessary condition for (1) having a continuous solution. By
differentiating (3), we get as the value of this solution

. .
uie) =22 2 [ ({; e (4).
We thus see that » is completely determined, that is that (1) does not
have more than one continuous solution. That the formula (4) really
does give a solution of (1) may be seen by substituting it in (1). The
second member of (1) thus becomes
‘ §in)urf“’ 1 d (¢ f(x)de e
T Jg (®—ErdE ), (§—2) 7

which reduces by means of Theorem 3, § 1, to

sinAdr d (* 1 (¢ f(x)dz
o dm[a (=& Ja (S—m)l"“dé’

and this in turn reduces by means of (2), when we let

b()= [ /(@) da,
5 ' 3% f " Fle) da = @)

Thus we see that (4) is a solution of (1), and we have proved

THEOREM 1. A necessary and sufficient condition that (1) fowe o
solution continuous in I is that f(z) be continuous in I, that f (a) =0,

and that

AGES

- (fb"""" g)l—)k
Yawe a continuous derivative throughout I. If these conditions are
fulfilled, (1) has only oné continuous solution, given by formula (4).

An important case in which these conditions are fulfilled is that 1n
which 7 is continuous and has a derivative which is finite, and has at
most a finite number of discontinuities in /, and / (@)=0. This we
see from Theorem 3, § 1, from which we also see that in this case (4)

may be written
‘ sin Ar [? f' (x) dx (5)
T o (2—a) 72 '

u (z) =
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Hence

THEOREM 2. If.f(z) s continuous and has a derivative finite wn I and
with only @ finite number of discontinuities there, and f(a) =0, equation
(1) has one and only one continuous solution, and this is given by formula
(5) *.

While this is essentially Abel’s result, that mathematician did not
consider the integral equation (1) but rather the differentio-integral

~equation ’
r@=[ 70 << )

By means of the theorems just established and Theorems 2, 3 of § 1
we readily deduce the result

THEOREM 3. A necessary and suficient condition that (6) have
solution which together with its derivative is continuous throughout I s
that f(x) be continuous in I, that f (w) =0, and that

v (&) dE

. ( z— g)l-:\
have a continuous derivative throughout 1. Lf these conditions are
Julfilled, the general solution of (6) is

v(z)=k+ Smwkw : é: (_w;;fi,

where k is an arbitrary constant.

By letting A =1 we get the solution of the mechanical problem of
§ 2. If in particular we let f(2) =const., we get Abel’s solution of the
problem of the tautochrone.

An easy extension of the results we have found is to the case in which

* Goursat,in Acta Math. vol. 27 (1903), pp. 131—133, has shown that equation (1)
still has a solution, though not a continuous one, if we drop the requirement that
f(a)=0. This may be readily seen by bringing in, in place of u, the function
sin A\r  f(a)
1-A°

v(r)=u(x) -
: T (z-a)
Making this substitution, we find that equation (1) reduces to
o (&) dE-
fz)-fla)= [ LELEE
- “ (z-8)
Conversely, we see that a solution of this last equation corresponds to a solution
of (1). Consequently a solution of (1) is
sin A\v  f(a) sin Ar (2 f'(x)dzx

T (z-a)t™* o a(z—x



