Principles
of
Compiler Design

ALFRED V. AHO

JEFFREY D. ULLMAN

Principles
of
Compiler Design

ALFRED V. AHO

; Bell Laboratories
Murray Hill, New Jersey

JEFFREY D. ULLMAN

Princeton University
Princeton, New Jersey

A
v

ADDISON-WESLEY PUBLISHING COMPANY
" Reading, Massachusetts - Menlo Park, California
London « Amsterdam - Don Mills, Ontario - Sydney

This book is in the
ADDISON-WESLEY SERIES IN
COMPUTER SCIENCE AND INFORMATION PROCESSING

Michael A. Harrison
Consulting Editor

Reproduced by Addisoh-Wesley from camera-ready copy supplied by the authors.

Copyright © 1977 by Bell Telephone Laboratories, Incorporated. Philippines copy-
right 1977 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America. Published simultaneously
in Canada. Library of Congress Catalog Card No. 77-73953.

ISBN 0-201-00022-9
BCDEFGHIJK-HA-7987

Preface

This book is intended as a text for an introductory course in compiler
design at the Junior, Senior, or first-year graduate level. The emphasis is
on solving the problems universally encountered in designing a compiler,
regardless of the source language or the target machine

Although few people are likely to implement or even maintain a com-
piler for a major programming language, many people can profitably use a
number of the ideas and techniques disoussed in this book in general
software design. For example, the finite-state techniques used to build lexi-
cal analyzers have also been used in text editors, bibliographic search sys-
tems, and pattern recognition programs. - Context-free grammars and
syntax-directed translation schemes have been used to build text processors
of many sorts, such as.the mathematical typesetting system used to produce
this book. Techniques of code optimization also have applicability to pro-
gram verifiers and to programs that produce ‘‘structured’ programs from
unstructured ones.

Use of the Book

We have attempted to cover the major topics in compiler design in depth.
Advanced material, however, has been put into separate chapters, so that
courses on a variety of levels can be taught from this book. A brief
synopsis of the chapters and comments on their appropriateness in a basic
course is therefore appropriate.

Chapter 1 introduces the basic structure of a compiler, and is essential
to all courses.

Chapter 2 covers basic concepts and terminology in programming
languages. In courses we have taught, this material was covered in prere-
quisite courses, but if that is not the case, this material too is essential.

Chapter 3 covers lexical analysis, finite-state techniques, and the
scanner generator. It is one of our favorite chapters, but if time does not
permit, all but Sections 3.1 and 3.2 could be skipped.

Chapters 4, 5, and 6 cover parsing. The first of these introduces basic
notions and is essential. One may then choose either 5 or 6 if both cannot
be covered.. Chapter 5 discusses the most common kinds of parsers —
operator precedence and recursive descent. Chapter 6 covers LR parsing,

iii

v PREFACI

which we believe to ve the method of choice.

In Chapter 7 we introduce the principal ideas connected with
intermediate-code generation. We use the syntax-directed approach and
give translation schemes for the most basic programming language con-
structs — simple assignments and simple control structures. We regard all
this material as essential.

Chapter 8 is a continuation of Chapter 7, covering the translation of
additional language constructs such as array and structure references.
Chapter 8 may be omitted if time presses.

Chapter 9 covers symbol tables. On the assumption that a course in
data structures is a prerequisite to a course on compilers, Section 9.2 may
be skipped. ’

Chapter 10 is on run-time organization. We introduce the subject by
discussing the run-time implementation of the programming language C,
which is easier to implement than other recursive languages such as
ALGOL or PL/I. A possible candidate for omission is Section 10.3 on
FORTRAN COMMON and EQUIVALENCE statements.

Chapter 11 discusses error recovery, another essential topic.

Chapters 12, 13, and 14 are on the subject of code optimization. The
essentials are introduced in Chapter 12, and a first course will probably not
go into the material of 13 and 14.

Finally, Chapter 15 covers object code generation. We have presented
only the most universally applicable ideas, and most of what we do cover is
appropriate for a first course. If forced to cut, however, we would omit
Sections 15.5 and 15.6.

This book also contains sufficient material to make up an advanced
course on compiler design. For example, at Princeton and Stevens we
taught a graduate course to students who had had an elementary compiler
course and a course in automata and language theory. There we covered
scanner generators from Chapter 3, LR parsers and parser generators from
Chapter 6, code optimization from Chapters "12, 13, and 14, and some
topics in code generation from Chapter 15.

The Compiler Project

Appendix B contains a modular implementation project in which the stu-
dent produces a compiler front end (lexical analyzer, parser, bookkeeping
routines, and an intermediate code generator). The intermediate code may
be interpreted, giving experience in run-time storage management. Unfor-
tunately, we find that the typical one-semester course does not normally
provide enough time for adding object code generation to this project,
although such a module can easily be attached if time permits.

Also in Appendix B is a description of a simple language, a ‘‘subset” of
'PASCAL, which can be used in the project if desired. We regret that to
make the job simple enough for a term project we have had to take out a

PREFACE v

number of the elegant features of PASCAL, including data type definitions
and block structure (although recursion remains). An SLR(1) grammar for
the language is given, along with directions for converting it to operator-
precedence or LL(1) form if one of those types of parser is desired.

Exercises

We have traditionally rated exercises with siars. Zero-starred exercises are
suitable for elementary courses, singly-starred exercises are intended for
more advanced courses, and doubly-starred exercises are food for thought.

Acknowledgments

The manuscrjpt at various stages was read by a number of people who gave
us valuable comments. In this regard we owe a debt of gratitude to Brenda
Baker, David Copp, Bruce Englar, Hania Gajewska, Sue Graham, Matt
Hecht, Ellis Horowitz, Steve Johnson, Randy Katz, Ken Kennedy, Brian
Kernighan, Doug Mcllroy, Marshall McKusick, Arnaldo Moura, Tom
Peterson, Dennis Ritchie, Eric Schmidt, Ravi Sethi, Tom Szymanski, Ken
Thompson, and Peter Weinberger.

This book was phototypeset by the authors using the excellent software
available on the UNIX operating system. We would like to acknowledge
the people who made it possible to do so. Dennis Ritchie and Ken Thomp-
son were the creators and principal implementors of UNIX. Joe Ossanna
wrote TROFF, the program which formats text for the phototypesetter.
Brian Kernighan and Lorinda Cherry produced EQN, the preprocessor
which enables mathematical text-to be typeset conveniently. Mike Lesk
implemented both the MS macro package, which greatly simplifies the
specification of page layouts, and TBL, the preprocessor used to prepare the
tables in this book.

The authors would particularly like to thank Carmela Scrocca who so
expertly typed the manuscript and prepared it for photocomposition. The
authors would also like to acknowledge the support services provided by
Bell Laboratories during the preparation of the manuscript.

. V. A
.D.U.

Chapter 2

2.1
2.2
2.3.
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Chapter 3

3.1
3.2
3.3

Contents

Introduction to Compilers

Compilers and translatorscccceevvveveeeeeennn. v
Why do we need translators?cccccoceeiieriereeeinnnn.
The structure of a compilerccccoeveeieiiiinnenrninnnn.
LexiCal ANAlYSIS: visssomsmvissassmimsnsmimivivisssisimimsiss
Syntax analysisSccceeeeeeeeveeeerivinnneeeennn. R e
Intermediate code generationccccoveuenen.
OPHIMIZALION ..vvniiiiiieieirieecieeeeeerieeeeeaieeeesicaneseernnnnnns
Code generation A U,
BOOKKCEDING s ssnssissamssssvmmnssssnsmssisisnainymsnssisesssmsnss '
Error handling it s eeoma et e e s
Compiler-writing toolSccceeeeeeiiiiiiiiiiiiiineireenanns
Getting startedcccoeeeieeieieeeeeiirieiei e s eeaenns -

Programming Languages

High-level programming languages
Definitions of programming languages
The lexical and syntactic structure of a language
Data ClEMENLS vmssssinscinsssssmmsmmsvsss i msmsssssveis
Data StrUCLUTESccoeeeiieieeeeeeeieriiiceee e e e e e e eeenannni e
OPETALOTS ...cooiiiiiiiiiieeeieeeee e e e e et e e e e e e e e eeeaananen
ASSIZNIMENT ooiiiiiiiiiiiiiieeeieeeeeeee e e ee e e e e e e e eeeeeseessnan
STAETNENES o siscsssinsnnssrimsrsmssermmsmisssomis M syl
PIOBTADL MMLS!coinsmenssssasimsinsmaraiminlise i asisiis e siviadas
Data environmentscc.oooevvvevieiicieeeeeeeeeeeeneneeieineenns
Parameter tranSmiSSioncocvveveieeeeeieeeenerieieinennn.
Storage Managementccocceevrieeeeeiviieeeeeserieeneeenes

Finite Automata and Lexical Analysis

The role of the lexical analyzerccccceeeeeeiennnns
A simple approach to the design of lexical analyzers
Regular eXpress$ionsoooooviieeiiiiieoeeie e

vii

10

12 .

13
17
19
20
21
21
23

26
28
32
34
38

50
53
55.
57
59

74
76

viii

34
3.5
3.6
3.7
3.8
39

Chapter 4

4.1
4.2
4.3

Chapter 5

5.1
5.2
5.3
5.4
5.5

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
79
7.10
7.11

CONTENTS
Finite automata:eeeveuvereeieeiiiiieic e 88
From regular expressions to finite automata 95
Minimizing the number of states of a DFA 99
A language for specifying lexical analyzers 103
Implementation of a lexical analyzerccc........... 109
The scanner generator as Swiss army knife 118
The Syntactic Specification of Programming Languages
Context-free grammarsccooovcveveireeereeereeenenennns 126
Derivations and parse treesccoveeeveeeeeeeeeeeeennnnn 129
Capabilities of context-free grammars 136
Basic Parsing Techniques
Lo} 1) ¢ 146
Shift-reduce parsingcococoeeemeerereieeeieeeeeeeeeeeenn. 150
Operator-precedence parsingcccccceeeeveneeeeennns 158
Top-dOWN ParSINGccccoeiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeans 174
Prediclive DATSCLS: ssssosssammssarsvomssssniss sivsssig s sovssisnsvasss 184
Automatic Construction of Efficient Parsers
LR PATSETS ..evvvieiirerireiiiiiiiieeiisssisssesesseeeesesneesesnnnnnsen 198
The canonical collection of LR(0) itemsc...cc....... 204
Constructing SLR parsing tablesccccccceeeiiieeenn. 211
Constructing canonical LR parsing tables 214
Constructing LALR parsing tablesccccccvveeeenn. 219
Using ambiguous Srammarsccccceeeereeerevmmemeeennens 225
An automatic parser generatorcccceeecevemmeneunnenns 229
Implementation of LR parsing tablesc.ccccceeonen. 233
Constructing LALR sets of itemsccccoceeiivneeennnn. 236
Syntax-Directed Translation
Syntax-directed translation schemesc.ccccoceeenee. 246
Implementation of syntax-directed translators 249
INtErMEdiBIe COUE covsvevmsmimnassvssmsasmmnnsse oy 254
POSHIX TIOLAHION. 5. cisimmssivinsvannissssivessssiss miseoamisiss eouse 254
Parse trees and Syntax tre€soceeeeeevvreeerereeneeeeeeeens 258
Three-address code, quadruples, and triples 259
Translation of assignment statementsc...coe.e.. 265
B0O0lEan €XPreSSIONScoceeeiviinieieiiiiiieaeeeeriineeseaananeas 271
Statements that alter the flow of control 281
PoStfix translationscooeeeeeeeeieeeeieiieeeieinesinenns 286
Translation with a top-down parserccccccceeeeenn. 290

CONTENTS

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6

Chapter 9

9.1
9.2
9.3

Chapter 10

10.1
10.2
10.3
10.4

Chapter 11

11.1
11.2
11.3
11.4

Chapter 12

12.1
12.2
12.3
12.4
12.5

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6

ix

More About Translation

Array references in arithmetic expressions 296
Procedure Callsco.eeeeeeeiiieeeeeieeeiieireeeeeeeeeireeeeens 303
DeClarationsc.eeeeeeeeeiveeeeeeeciieeeeeeeeeieee e 307
Case StAteMENTSccceiiiririeiieeie e e eeeeaeseeeeeeens 308
ReECOrd SIrUCLUTEScceviiiiiiieeieiiiiiiieeececcnieie e 312
PL/I-Style StTUCLUIESccceeeremviirssnneeesseemesssnneessasennes 317

Symbol Tables

The contents of a symbol tableccceevvriinnns 328
Data structures for symbol tablescccocuvveenn.... 336
Representing scope informationccccceeeeenne... 341

Run-time Storage Administration

Implementation of a simple stack allocation scheme 351

Implementation of block-structured languages 356
Storage allocation in FORTRANccceevvvnennnnn. 364
Storage allocation in block-structured languages 377

Error Detection and Recovery

| 20 5 (o) ¢ OSSR ,. 382
Lexical-phase €ITOISuveieiiiieeiiiiieiieeeeee e eeeeee e 388
Syntactic-phase EITOTScvvvveeeiieieiieieeiiieeeeeeeeeeenn 391
NI 1 s E:T 18 (A=) § (0] 1S 402

Introduction to Code Optimization

The principal sources of optimization 408
LOOp OPtIMIZAtIONovvveieieeeeririeiiininieee e eeeeeeinnsinenens « 410
The DAG representation of basic blocks 418
Value numbers and algebraic 1awsccoeuneeee. 427
Global data-flow analysisccccocvveeviveeiiinrerennne. 429

More About Loop Optimization

DomiINatorsccovviiiiiiieeeeeeeeeeee e 442
Reducible flow graphsccccoccveviiiviiiitoneeeiineneenn, 447
Depth-firSt SEArChvvveiviiiiieieirieireieeieaeeeeeeeneeeeeeees 449
Loop-invariant COMpUtationscccceeveeeiiiveneereeenn 454
Induction variable eliminationccccccevvveeeennnnn. 466

Some other loop optimizationsccccccceeeveeeeereeennn.. 471

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7.
14.8
14.9

Chapter 15

15.1

15.2
15:3
15.4
15.5
15.6.
15.7

Appendix A

Al
A2
A3

Appendix B

B.1
B.2
B.3
B.4
B.5
B.6

CONTENTS

More About Data-Flow Analysis

Reaching definitions againccccocccvieiecciiininnennenns 478
Available expressions § emmiei et RS SRR RA 482
COpY Propagationcccccceeeeeeeeerieeeieresssnsessessssnnens 487
Backward flow problemscccooeeeeeeviiiiieeiriiieeeeeen 489
Very busy expressions and code hoistingc.c.c..... 491
The four kinds of data-flow analysis problems 497
Handling POINtErsocooevevivirrirrieeeeieeeereeeeseeeaeaees 499
Interprocedural data-flow analysisccccceevveeiueenne 504
Putting it all togethercccoooveeieriieiiiieiiieeeeeee 511

Code Generation

ODbjJECt PTOBIAMS ...ovvvieeeeeeiiiiieeeeeieieeeeeeiinreeeeessnnannes 518
Problems in code generationccccouveeriviecnnnnee. 521
A MAching MOAEI :iovisivivisimismsssmmmismssinsaisnsnsasisnssassrss 523
A simple code generator s s sa s RSN S RS 525
Register allocation and assignmentcccccceeeeeennne. 533
Code generation from DAG’Scccccevviiiiieeeniccnnns 537
Peephole optintizationccccoeeererevivivnviiineneeeeaenns 548

A Look at Some Compilers

The C cOmPILErsoeveeiiieiiiiiiieeceeeeeceereee e 557
The FORTRAN H compilerccccoeveirriiiiiriiniiecinnnens 559
The BLISS/11 €OMPIET .onsiomssvsvivasssiasanansasssninsisnsosaas 561
A Compiler Project

INtroductioncccooeeeeiieieeiciiinrannnnnnes PSR 563
A PASCAL Subsetc.ccooennnnee. B, 563
Program StTUCLUTEccveieieeireeeeieereeeneeeeesnsnnnenreeees 566
Lexical conventionsccccveeveenn.. [T 566
Suggested EXEICISESocvvvviviiecmeriirnririeieieiereieeesenens 567
Some extensions S S R A A AR A A 569
Bibliographycooooiiiiiiiieeeeeeeeeeeeeee e, 570

CHAPTER 1

Introduction
to
Compilers

The purpose of this book is two-fold. We hope to acquaint the reader with
the basic constructs of modern programming languages and ‘'to shcw how
they can be efficiently implemented in the machine language of a typical
computer. We shall also show How tools can be developed and used to help
construct certain translator components. These tools not only facilitate the
construction of compilers, but they can also be used in a variety of applica-
tions not directly related to compiling.

1.1 Compilers and Translators

A translator is a program that takes as input a program written in one pro-
gramming language (the source language) and produces as output a program
in another language (the object or target language). If the source language is
a high-level language such as FORTRAN, PL/I, or COBOL, and the object
language is a low-level language such as an assembly language or machine
language, then such a translator is called a compiler.

Executing a program written in a high-level programming language is
basically a two-step process, as illustrated in Fig. 1.1. The source program
must first be compiled, that is, translated into the object program. Then the
resulting object program is loaded into memory and executed.

Compilers were once considered almost impossible programs to write.
The first FORTRAN compiler, for example, took 18 man-years to imple-
ment (Backus et al. [1957]). Today, however, compilers can be built with
much less effort. In fact, it is not unreasonable to expect a fairly substan-
tial compiler to be implemented as a student project in a one-semester com-
piler design course. The principal developments of the past twenty years
which led to this improvement are:

2 INTRODUCTION TO COMPILERS

Source — | Compiler Object
Program p Program
Object Object Object

I.’ rogram - — Program - Program
Input

Fig. 1.1. Compilation and execution.

® The understanding of how to organize and modularize the process of
compilation,

® The discovery of systematic techniques for handling many of the
important tasks that occur during compilation,

® The development of software tools that facilitate the implementation of
compilers and compiler components.

These are the developments we shall consider in this book. This chapter
provides an overview of the compilation process and introduces the major
components of a compiler.

Other Translators

Certain other translators transform a. programming language into a
simplified language, called intermediate code, which can be directly executed
using a program called an interpreter. We may think of the intermediate
code as the machine language of an abstract computer designed to execute
the source code. For example, SNOBOL is often interpreted, the inter-
mediate code being a language called Polish postfix notation (see Section
7.4). In some cases, the source language-itself can be the intermediate
language. For example, most command languages, such as JCL, in which
one communicates directly with the operating system, are interpreted with
no prior translation at all.

* Interpreters are often smaller than compilers and facilitate the imple-
mentation of complex programming language constructs. However, the
main disadvantage of interpreters is that the execution time of an inter-
preted program is usually slower than that of a corresponding compiled
object program.

There are several other important types of translators, besides com-
pilers. If the source language is assembly language and the target language
is machine language, then the translator is called an assembler. - The term
preprocessor is sometimes used for translators that take programs in one

1.1 COMPILERS AND TRANSLATORS 3

high-level language into equivalent programs in another high-level
language. For example, there are many FORTRAN preprocessors that map
“structured”’ versions of FORTRAN into conventional FORTRAN.

1.2 Why do we Need Translators?

The answer to this question is obvious to anyone who has programmed in
machine language. With machine language we must communicate directly
with a computer in terms of bits, registers, and very primitive machine
operations. Since a machine language program is nothing more than a
sequence of 0’s and 1’s, programming a complex algorithm in such a
language is terribly tedious and fraught with opportunities for mistakes.
Perhaps the most serious disadvantage of machine-language coding is that
all operations and operands must be specified in a numeric code. Not only
is a machine language program cryptic, but it also may bé impossible te
modify in a convenient manner.

Symbolic Assembly Language

Because of the difficulties with machine language programming, a host of
““higher-level’” languages have been invented to enable the programmer to
code in a way that resembles his own thought processes rather than the ele-
mentary steps of the computer. The most immediate step away from
machine language is symbolic assembly language. In this language, a pro-
grammer uses mnemonic names for both operation codes and data
addresses. Thus a programmer could write ADD X, Y in assembly
language, instead of something like 0110 001110 010101 in machine
language (where 0110 is the hypothetical machine dperation code for “‘add”
and 001110 and 010101 are the addresses of X and Y).

A computer, however, cannot execute a program written in assembly
language. That program has to be first translated to machine language,
which the computer can understand. The program that performs this trans-
lation is the assembler.

Macros

Many assembly (and programming) languages provide a ‘‘macro’’ facility
whereby a macro statement will translate into a sequence of assembly
language statements and perhaps other macro statements before being
translated into machine code. Thus, a macro facility is a text replacement
capability. There are two aspects to macros: definition and use. To illus-
trate the utility of macros, consider a situation in which a machine does not
have a single machine- or assembly-language statement that adds the con-
tents of one memory address to another, as did our hypothetical assembly

4 INTRODUCTION TO COMPILERS

instruction ADD X, Y, above. Instead, suppose the machine has an
instruction LOAD, which moves a datum from memory to a register, an
instruction ADD, which adds the contents of a memory address to that of a
register, and an instruction STORE, which moves data from a register to
memory. Using these instructions, we can create, with a macro definition, a
‘‘two-address add’’ instruction as follows.

MACRO ADD2 X, Y
LOAD Y
ADD X
STORE Y
ENDMACRO

The first statement ‘gives the name ADD2 to the macro and defines its
dummy arguments, known as formal parameters, X and Y. The next three
statements define the macro, that is, they give its translation. We assume
that the machine has only one register, so the question of what registers
LOAD and STORE refer to needs no elaboration.

Having defined ADD2 in this way, we can then use it as an ordinary
assembly language operation code. For example, if the statement ADD2
A, B is encountered somewhere after the definition of ADD2, we have a
matro use. Here, the macro processor substitutes for ADD2 A, B the three
statements which fo-m the definition of ADD2, but with the actual parame-
ters A and B replacing the formal parameters X and Y, respectively. That
is, ADD2 A, B is translated-to

LOAD B
ADD A
STORE B

High-Level Languages

Symbolic assembly programs are easier to write and understand than
machine-language programs primarily because numerical codes for
addresses and-operators are replaced by more meaningful symboli¢ codes.
Nevertheless, even with macros, there are severe drawbacks to writing in
assembly language. The programmer must still know the details of how a
specific computer operates. He must also mentally translate complex opera-
tions and data structures into sequences of low-level operations which use
only the primitive data types that machine language provides. The pro-
grammer must also be intimately concerned with how and where data is
represented within the machine. Although there are a few situations in

1.2 WHY DO WE NEED TRANSLATORS? 5

which such detailed knowledge is essential for efficiency, most of the
programmer’s time is unnecessarily wasted on such intricacies.

To avoid these problems, high-level programming. languages were
developed. Basically, a high-level programming language allows a program-
mer to express algorithms in a more natural notation that avoids many of
the details of how a specific computer functions. For example, it is much
more natural to write the expression A+B than a sequence of assembly
language instructions to add A and B. COBOL, FORTRAN, PL/I,
ALGOL,T SNOBOL, APL, PASCAL, LISP and C are some of the more
common high-level languages, and we assume the reader is familiar with at
least one of these languages. References for these languages and others are
found in the bibliographic notés of Chapter 2.

A high-level programming language makes the programming task
simpler, but it also introduces some problems. The most obvious is that we
need a program to translate the high-level language into a language the
machine can understand. In a sense, this program, the compiler, is com-
pletely- analogous to the assembler for an assembly language.

A compiler, however, is a substantially more complex program to write
than an assembler. Some compilers even make use of an assembler as an
appendage, with the compiler producing assembly code, which is then
assembled and loaded before being executed in the resulting machine-
language form.

Before discussing compilers in detail, however, we should know the
types of constructs typically found in high-level programming languages.
The form and meaning of the constructs in a programming language have a
strong impact on the overall design of a compiler for that language.
Chapter 2 of this book reviews the main concepts concerning programming
languages.

1.3 The Structure of a Compiler

A compiler takes as input a source program arid produces as output an
equivalent sequence of machine instructions. This process is so complex
that it is not reasonable, either from a logical point of view or from an
implementation point of view, to consider the compilation process as occur-
ring in one single step. For this reason, it is customary to partition the
compilation process into a series of subprocesses called phases, as shown in
Fig. 1.2. A phase is a logically cohesive operation that takes as input one
representation of the source program and produces as output another
representation.

1 Throughout this book, ALGOL refers to ALGOL 60 rather than ALGOL 68.

6 INTRODUCTION TO COMPILERS

Source Program

Y

Lexical
analysis

4

Syntax
analysis

v

Intermediate
Table code Error
management | | generation | | handling

N

optimization

y

Code
generation

J

Target Program

Fig. 1.2. Phases of a compiler.

The first phase, called the lexical analyzer, or scanner, separates charac-
ters of the source language into groups that logically belong together; these
groups are called rokens. The usual tokens are keywords, such as DO or IF,
identifiers, such as X or NUM, operator symbols such as <= or +, and
punctuation symbols such as parentheses or commas. The output of the
lexical analyzer is a stream of tokens, which is passed to the next phase, the
syntax analyzer, or parser. The tokens in this stream can be represented by
codes which we may regard as integers. Thus, DO might be represented by
1, + by 2, and “‘identifier”” by 3. In the case of a token like ‘‘identifier,”’ a
second quantity, telling which of those identifiers used by the program is
represented by this instance of token ‘‘identifier,”’ is passed along with the
integer code for ‘‘identifier.”

The syntax analyzer groups tokens together into syntactic structures.
For example, the three tokens representing A+B might be grouped into a

1.3 THE STRUCTURE OF A COMPILER 7

syntactic structure called an expression. Expressions might further be com-
bined to form statements. Often the syntactic structure can be regarded as
a tree whose leaves are the tokens. The interior nodes of the tree represent
strings of tokens that logically belong together.

The intermediate code generator uses the structure produced by the syn-
tax analyzer to create a stream of simple instructions. Many styles of inter-
mediate code are possible. One common style uses instructions with one
operator and a small number of operands. These instructions can be
viewed as simple macros like the macro "ADD2 discussed in Section 1.2.
The primary difference between intermediate code and assembly code is
that the intermediate code need not specify the registers to be used for each
operation.

Code optimization is an optional phase designed to improve the inter-
mediate code-so that the ultimate object program runs faster and/or takes
less space. Its output is another intermediate code program that does the
same job as the original, but perhaps in a way that saves time and/or space.

The final phase, code generation, produces the object code by deciding
on the memory locations for data, selecting code to access each datum, and
selecting the registers in which each computation is to be done. Designing
a code generator that produces truly efficient object programs is one of the
most difficult parts.of compiler design, both practically and theoretically.

The table-management, or bookkeeping, portion of the compiler keeps
track of the names ased by the program and records essential information
about each, such as its type (integer, real, etc.). The data structure used to
record this information is called a symbol table.

The error handler is invoked when a flaw in the source program 'is
detected. It must warn the programmer by issuing a diagnostic, and adjust
the information being passed from phase to phase so that each phase can
proceed. It is desirable that compilation be completed on flawed programs,
at least through the syntax-analysis phase, so that as many errors as possi-
ble can be detected in one compilation. Both the table management and
error handling routines interact with all phases of the compiler.

Passes

In an implementation of a compiler, portions of one or more phases are
combined into a module called a-pass. A pass reads the source program or
the output of the previous pass, makes the transformations specified by its
phases, and writes output into an intermediate file, which may then be read
by a subsequent pass. If several phases are grouped into one pass, then the
operation of the phases may be interleaved, with control alternating among
several phases. ‘ '

