B S it E BN 2 H M R 3

M AL SR
(3 i)

Introduction to Dlstrlbuted Algorithms

MIBOIGLI O}

Se‘cond %*Eﬂitmn

il G10101 ERLLE R

1110101 B 104

-—ﬁ*ﬂ "W‘ SH g
Jhere AR WIS S N

[y B

++' —l ﬁ& ~— T AR Y Ea e :

[#] Gerard Tel

A e .
| T FIF & &AL
‘ Publishing House of Electronics Industry

http://www.phei.com.cn

ESMTEPLRFEEM RS

THREERIR
(E_-hR)
(R &0&)

Introduction to Distributed Algorithms
Second Edition

[#%] Gerard Tel #*

T FIN & AR AL
Publishing House of Electronics Industry

Jt3 - BEIJING

K- By

SR 20 BER—ERBRXENTRF T, FBEZRMASG H T HEBRHER, SRART
T E5ZHXMEISHR XEBMESEPRERMIARELA, Rnf, FHEERNT EAREHHNES
AEZFTEN TRBAFEARSE . BPERITR T A AEE SRR FREE, BaEHEERFN
BB, HAELTHEN N EQE AN AR ERE Y (CInIEEE, T RRE . B3R, ZIE8H
Bk, BEAMSMENAEL. REEX, RHRNEE. RPRGERES), SR THRAAAABELIAE
ST . 55 T REHTIM 56 T 07 [AT B T AR A B ERIRR T Y45 B AR R BAT, A7EX ey L B
FIREIA R RO TR B

Originally published by Cambridge University Press in 2000.

This reprint edition is published with the permission of the Syndicate of the Press of the University of Cambridge, Cambridge,
England.

z::gil%ﬁ:fﬁﬁi Cambridge University Press 2000 £ H4 i

A= 53O B R AR BI3E B QUAT ¥ R

© Cambridge University Press 2000.

This edition is licensed for distribution and sale in the People’s Republic of China only excluding Hong Kong, Taiwan and
Macau and may not be distributed and sold elsewhere.

FHEIESCEEER ((URPEKBE) B Cambridge University Press 8-F o7 Tk AR . HIFSORAUS 5
. REFT], MILUEMEARTREHNBIPEEBHE.

ABRIWERIRTET R ARHERN (FEEAEE . WIHITERUREBHK) RITS5HE, 3+
AREHMBE RITSHE. .

MRS aRBIEES: BF: 01-2003-2426
‘HEBENSRE (CIP) #iE

X218 = Introduction to Distributed Algorithms, Second Edition: 4R/ (%) #/K (Tel,G.) X%.
-dbxt: BFTALHARM, 2003.7

(BESMTRDLBLES 25)

ISBN 7-5053-8810-X

[.4r. D.4%.. W aFHEV - R -S4t - V. TP301.6
o E A B 3 4H CIP BB B (2003) 55046941 5

WEHNE:. & K

B R %, JLRUMAREIRST

HRRTT: BFTALHARA hitp//www.phei.com.cn
ERHHRE A 173 /5% BB%: 100036

2 . SuEeE

“FF & 787 x 980 1/16 Epg: 38.25 <F¥. 857 FF

B . 20034E7 ASS1AR 20034E7 A% 1 REIR

E fr: 59.005T

AMEREF IR BBRAGEE, B &R PIM, AaRES SRS, %#E’é& hEAALAITHRBER, BA
®,4. (010) 68279077

tH hR % BA

AAMHEMM S ZI0FEREERLF M-S L BHNEENY, BRERSIRER B
B, EREMAWTIORKAX, BFE—3GEN ERMEESRFN—RIT A MIERERSHEN
HEREFZ—. GERPEMBEARFTEAANKRS 58, RREEERESNBMNLEEE,

40T, EHRERSHFRIRFENFGRNEERE. TENTEANY, AERERE K
H S BRI, A R AR EB B EE N F 25 B A E R R EAME B A T B IR AR
B, UEREETEEY R EEREHKT .

BT TR RRBERIIHESMEERBHNZE, BiRHRT “EINTENRSE8H R
51" A, REBMESRFREE, ST BkE, BESHEREEGH, BT ER
b, LB AFBER . RRE L. REBERMTEXN S HTR, T AR B bk g f 4
B XEEB Y RERN T AN S5ERE . RERK. HEVASSSEH . Bk 55
. BRESHEAHE., HBEE. ARERGSSHE. RETRS, R, RITWEY33T —
SR T FSURNTER , 2c 2 B RS A0 ST IRRGH 2 A SR , %o R 45 0 R R 2 S SN 4R b4
LA BRI A o

R BEE L, RITFIEEES 4 H R) HE AR A R B bt , 3l Pearson Education 354 #
FHARRHE | #MIT - F/RET H AR . RS T30 AT . SIFF A IR, SESY
FEEERRESHFOBER ¥H , EREHLET - FHBR Douglas E. Comer), B - HiFEHRIEH William
Stallings). PRk - M¥/K (Harvey M. Deitel). JEFIHT - i3 (Uyless Black) %,

NAREM AR EMEER R, RIOAETHERE, bRA%. AEMSHRIAE. 8
BR%¥. BMGERE. R, WIS, BRETL S, Ehiii FHROm.
HEPRFERARE MU EET K¥SELBROBENE THITS 5 T AR %S, 3%
MR LAE, M FBEA VR FIREM B THIT. 81, WABRTILTEHES R HEN
WA S,

EERTIB %, BENRBINTERY, eS8t RR, RIVMT KBARTHE,
BIEN RS AITRESIE; REMEN AREBI LA O; ITHE. EPR BT Mm%,
X FIRXEA P HARHER, BITES SEEREAN L TRERES TR, B—H#GFTHBIT.

W, BIER SENFLHIRA T AR, BE—8M HBERRN, A BN ERE T
ROWBY. S5, RITEREINE SERRSUTHBIRER, NI KIT4 D HE 2 EIMEE S
MSHH, ARETVREBEER SEREHEERNERMHES,

BT Toll i et

%

£

L

ES
BT

BER
ik
AEIT
HE{R AR
4 B

kB

P HMERS

JERKRFEH TR
FEPER B L
ERKAER S TREREE
R KFRA TR TR

FEARKEERFBb . #%

FHERFEHREYR SR RER
EbrE BA G SEFERETFEAR

BFHERFHENNEESEARRER
FEITEN SRRV ERSTE

FEARBREETKFHHE
SEMBEARTHOEE, BLERIF

EBTBERATENRF S TERER
E¥EAATHERAR L EE

EREFZEERRTOEE, HEXFEHR
FETENSSEFEE, DETHENRSEEK

BB ERARRET BN ERHIR . S0
FEMHTENEMREHERFBER LB EAER

FHRFFEIEERHR

Preface

Distributed systems and distributed information processing have received
considerable attention in the past few years, and almost every university
offers at least one course on the design of distributed algorithms. There
exist a large number of books about principles of distributed systems; see
for example Tanenbaum [Tan96] or Sloman and Kramer [SK87], but these
concentrate on architectural aspects rather than on algorithms. Since the
first edition of this book, other texts on distributed algorithms have been
published by Barbosa [Bar96], Lynch [Lyn96], and Attiya and Welch [AW9S].

It has been remarked that algorithms are the backbone of every computer
application; therefore a text devoted solely to distributed algorithms seems
to be justified. The aim of this book is to present a large body of theory
about distributed algorithms, which has been developed over the past twenty
years or 0. This book can be used as a textbook for a one- or two-semester
course on distributed algorithms; the teacher of a one-semester course may
select topics to his own liking.

The book will also provide useful background and reference information
for prof:;ssional engineers and researchers working with distributed systems.

Exercises. Each chapter (with the exception of Chapters 1 and 13) ends
with a list of exercises and small projects. The projects usually require
the reader to develop a small but non-trivial extension or application of the
material treated in the chapter, and in most cases I do not have a “solution”.
If the reader succeeds in working out one of these small projects, I would be
pleased to have a copy of the result.

A list of answers (sometimes partial) to most of the exercises is available
for teachers; it can be obtained from the author or by anonymous ftp.

Corrections and suggestions. If the reader finds errors or omissions in
this book, please inform the author (preferably by electronic mail). All
constructive criticism, including suggestions for more exercises, is most wel-
come.

Acknowledgements. Draft versions of this book were proofread carefully
by the following: Erwin Bakker, Hans Bodlaender, Stefan Dobrev, Petra
van Haaften, Ted Herman, Jan van Leeuwen, Patrick Lentfert, Friedemann
Mattern, Pascale van der Put, Peter RuZitka, Martin Rudalics, Anneke
Schoone, and Kaisa Sere. Their comments were very helpful in improv-
ing the quality of the manuscript. Also, some students of the fall courses on
“Gedistribueerde Algoritmen” at Utrecht University provided me with help-
ful suggestions. The Department of Computer Science provided the technical
support necessary for text processing and printing. Linguistic editing was
performed by Susan Parkinson.

Gerard Tel, April 1994 /February 2000.

<10 -

F2E
3%
FaE

BSHE

Hok
HT1E
HeH

BoE

BUE FARSER

Bl APMETIRGE - veveereersrersessesaresenrenie sttt

Introduction: Distributed Systems

: %—ﬁlﬁ ¥ (Protocols)

The Model

ﬁfgy}i)‘l ...

Communication Protocols

Routing Algorithms

FEFCAHHRAD AL ++vveevverererensrrressesarenssreeessmnsnestesssraasnnssrsesssseassennas

Deadlock—free Packet Switching

E_#45 EMME (Fundamental Algorithms)

&ﬁ& _L—jj‘aﬂj‘ﬁ& ...

Waves and Traversal Algorithms

Snapshots

Sense of Direction and Orientation

...

% lZﬁ Mgﬁ*ﬂglﬁjﬂ; .. 396

Synchrony in Networks

$=%45 B (Fault Tolerance)-

BE13 B AT RGBS < vvvvrvrrvrrnmmunnemiettttt et ettt anenenennnnnnns 427
Fault Tolerance in Distributed Systems

% 14§ ﬁﬂ;?\%:{:g@@% .. 437
Fault Tolerance in Asynchronous Systems '

15 =3 ﬁt{;—?\gﬁ:pﬂg?g% .. 469
Fault Tolerance in Synchronous Systems ’,

% 16 ﬁ &ﬁﬁw .. e seetesaneettterererttaebaraiantesenenaan 505
Failure Detection

% 17 ﬁ ﬁﬁﬁ; ... 520
Stabilization ‘

A DB ettt e e s et e e st et e e s 551
Pseudocode Conventions

I‘ﬁi B E *ﬂ Mgﬁ .. 556
Graphs and Networks

éjg-jcm e R DT U 572

References

BRG] sorrrr e e e e e e et e e e s e e et e 587

Index

Contents

1 Introduction: Distributed Systems
1.1 What is a Distributed System?
1.2 Architecture and Languages
1.3 Distributed Algorithms.
14 Outlineofthe Book

Part One: Protocols

2 The Model
2.1 Transition Systems and Algorithms
- 2.2 Proving Properties of Transition Systems
2.3 Causal Order of Events and Logical Clocks
2.4 Additional Assumptions, Complexity
ExercisestoChapter 2

-3 Communication Protocols
3.1 The Balanced Sliding-window Protocol
3.2 A Timer-based Protocol e e e e e e e e e e e e
Exercises to Chapter 3 e e e e e e e e e

4 Routing Algorithms ‘ ‘
4.1 Destination-based Routing
4.2 The All-pairs Shortest-path Problem
4.3 The Netchange Algorithm
‘4.4 Routing with Compact Routing Tables
4.5 Hierarchical Routing
Exercises to Chapter4 e

5 Deadlock-free Packet Switching
5.1 Introduction e e e e e
5.2 Structured Solutions,

54 FurtherlIssues.
Exercises to Chapter 5,

Part Two: Fundamental Algorithms

6

10

|6u

Wave and Traversal Algorithms

6.1 Definition and Use of Wave Algorithms
6.2 A Collection of Wave Algorithms
6.3 Traversal Algorithms
6.4 Time Complexity: Depth-first Search,
6.5 RemainingIssues e e e e e e
Exercisesto Chapter 6

Election Algorithms

7.1 Imtroduction.
7.2 RingNetworks
7.3 Arbitrary Networks
7.4 The Korach-Kutten—Moran Algorithm
Exercisesto Chapter 7

Termination Detection

8.1 Preliminaries
8.2 Computation Treesand Forests
8.3 Wave-based Solutions
84 OtherSolutions

Anonymous Networks

9.1 Preliminaries
9.2 Deterministic Algorithms
9.3 A Probabilistic Election, Algorithm
9.4 Computing the Network Size
ExercisestoChapter 9

Snapshots

10.1 Preliminaries
10.2 Two Snapshot Algorithms e
10.3 Using Snapshot Algorithms
10.4 Application: Deadlock Detection
ExercisestoChapter 10

11.3 Computing in Hypercubes
11.4 Complexity-related Issues
11.5 Conclusions and Open Questions
Exercises to Chapter 11

12 Synchrony in Networks
12.1 Preliminaries, .
12.2 Election in Synchronous Networks
12.3 Synchronizer Algorithms
12.4 Application: Breadth-first Search
12.5 The Archimedean Assumption
Exercises to Chapter 12

Part Three: Fault Tolerance

13 Fault Tolerance in Distributed Systems
13.1 Reasons for Using Fault-tolerant Algorithms
13.2 Robust Algorithms
13.3 Stabilizing Algorithms

14 Fault Tolerance in Asynchronous Systems
14.1 Impossibility of Consensus,
14.2 Initially Dead Processes
14.3 Deterministically Achievable Cases
14.4 Probabilistic Consensus Algonthms
14.5 Weak Termination
Exercisesto Chapter 14

15 Fault Tolerance in Synchronous Systems
15.1 Synchronous Decision Protocols
15.2 Authenticating Protocols
15.3 Clock Synchronization
Exercises to Chapter 15

18 Failure Detection
16.1 Model and Definitions
16.2 Solving Consensus with a Weakly Accurate Detector
16.3 Eventually Weakly Accurate Detectors
16.4 Implementation of Failure Detectors
Exercisesto Chapter 16

17 Stabilization

17.3 Methodology for Stabilization

Exercises to Chapter 17
Part Four: Appendices

A Pseudocode Conventions

B Graphs and Networks
References

Index

Chapter 1

Introduction: Distributed Systems

This chapter gives reasons for the study of distributed algorithms by briefly
introducing the types of hardware and software systems for which distributed
algorithms have been developed. By a distributed system we mean all com-
puter applications where several computers or processors cooperate in some
way. This definition includes wide-area computer communication networks,
but also local-area networks, multiprocessor computers in which each pro-
cessor has its own control unit, and systems of cooperating processes.

The different types of distributed system and the reasons why distributed
systems are used are discussed in Section 1.1. Some examples of existing
systems will be given. The main topic of this book, however, is not what
these systems look like, or how they are used, but how they can be made to
work. And even that topic will be further specialized towards the treatment
of the algorithms used in the systems.

Of course, the entire structure and operation of a distributed system is
not fully understood by a study of its algorithms alone. To understand
such a system fully one must also study the complete architecture of its
hardware and software, that is, the partition of the entire functionality into
modules. Also, there are many important questions related to properties
of the programming languages used to build the software of distributed
systems. These subjects will be discussed in Section 1.2.

It is the case, however, that there are already in existence excellent books
about distributed systems, which concentrate on the architectural and lan-
guage aspects; see, e.g., Tanenbaum [Tan96], Sloman and Kramer [SK87),
Bal [Bal90], Coulouris and Dollimore [CD88] or Goscinski [Gos91]. As al-
ready mentioned, the present text concentrates on algorithms for distributed
systems. Section 1.3 explains why the design of distributed algorithms dif-

2 Introduction to Distributed Algorithms, Second Edition

fers from the design of centralized algorithms, sketches the research field of
distributed algorithmus, and outlines the remainder of the book.

1.1 What is a Distributed System?

In this chapter we shall use the term “distributed system” to mean an in-
terconnected collection of autonomous computers, processes, or processors.
The computers, processes, or processors are referred to as the nodes of the
distributed system. (In the subsequent chapters we shall use a more techni-
cal notion, see Definition 2.6.) To be qualified as “autonomous”, the nodes
must at least be equipped with their own private control; thus, a parallel
computer of the single-instruction, multiple-data (SIMD) model does not
qualify as a distributed system. To be qualified as “interconnected”, the
nodes must be able to exchange information.

As (software) processes can play the role of nodes of a system, the defi-
nition includes software systems built as a collection of communicating pro-
cesses, even when running on a single hardware installation. In most cases,
however, a distributed system will at least contain several processors, inter-
connected by communication hardware.

More restrictive definitions of distributed systems are also found in the
literature. Tanenbaum [Tan96], for example, considers a system to be dis-
tributed only if the existence of autonomous nodes is transparent to users
of the system. A system distributed in this sense behaves like a virtual,
stand-alone computer system, but the implementation of this transparency
requires the development of intricate distributed control algorithms.

1.1.1 Motivation

Distributed computer systems may be preferred over sequential systems, or
their use may simply be unavoidable, for various reasons, some of which are
discussed below. This list is not meant to be exhaustive. The choice of a
distributed system may be motivated by more than one of the arguments
listed below, and some of the advantages may come as a spin-off after the
choice has been made for another reason. The characteristics of a distributed
system may vary also, depending on the reason for its existence, but this
will be discussed in more detail in Subsections 1.1.2 through 1.1.6.

(1) Information exchange. The need to exchange data between differ-
ent computers arose in the sixties, when most major universities and
companies started to have their own mainframe computer. Coop-
eration between people of different organizations was facilitated by

Chapter 1 Introduction: Distributed Systems 3

2

3)

the exchange of data between the computers of these organizations,
and this gave rise to the development of so-called wide-area networks
(WANs). ARPANET, the predecessor of the current Internet, went
on-air in December, 1969. A computer installation connected in a
wide-area network (sometimes called a long-haul network) is typi-
cally equipped with everything a user needs, such as backup storage,
disks, many application programs, and printers.

Later computers became smaller and cheaper, and soon each single
organization had a multitude of computers, nowadays often a com-
puter for each person (a personal computer or workstation). In this
case also the (electronic) exchange of information between personnel
of one organization already required that the autonomous computers
were connected. It is even not uncommon for a single person or fam-
ily to have multiple computers in the home, and connect these in a
small personal home-network.

Resource sharing. Although with cheaper computers it became fea-
sible to equip each employee of an organization with a private com-
puter, the same is not the case for the peripherals (such as printers,
backup storage, and disk units). On this smaller scale each computer
may rely on dedicated servers to supply it with compilers and other
application programs. Also, it is not effective to replicate all appli-
cation programs and related file resources in all computers; apart
from the waste of disk space, this would create unnecessary main-
tenance problems. So the computers may rely on dedicated nodes
for printer and disk service. A network connecting computers on an
organization-wide scale is referred to as a local-area network (LAN).

The reasons for an organization to install a network of small com-
puters rather than a mainframe are cost reduction and extensibil-
ity. First, smaller computers have a better price-performance ratio
than large computers; a typical mainframe computer may perform
50 times faster than a typical personal computer, but cost 500 times
more. Second, if the capacity of a system is no longer sufficient, a
network can be made to fit the organization’s needs by adding more
machines (file servers, printers, and workstations). If the capacity of
a stand-alone system is no longer sufficient, replacement is the only
option.

Increased reliability through replication. Distributed systems have the
potential to be more reliable than stand-alone systems because they

~ have a partial-failure property. By this it is meant that some nodes of

the system may fail, while others are still operating correctly and can

4 Introduction to Distributed Algorithms, Second Edition

take over the tasks of the failed components. The failure of a stand-
alone computer affects the entire system and there is no possibility
of continuing the operation in this case. For this reason distributed
architectures are a traditional concern in the design of highly reliable
computer systems.

A highly reliable system typically consists of a two, three, or four
times replicated uniprocessor that runs an application program and
is supplemented with a voting mechanism to filter the outputs of
the machines. The correct operation of a distributed system in the
presence of failures of components requires rather complicated algo-
rithmical support.

(4) Increased performance through parallelization. The presence of mul-
tiple processors in a distributed system opens up the possibility of
decreasing the turn-around time for a computation-intensive job by
splitting the job over several processors.

Parallel computers are designed specifically with this objective in
mind, but users of a local-area network may also profit from paral-
lelism by shunting tasks to other workstations.

(5) Simplification of design through specialization. The design of a com-
puter system can be very complicated, especially if considerable func-
tionality is required. The design can often be simplified by splitting
the system into modules, each of which implements part of the func-
tionality and communicates with the other modules. .

On the level of a single program modularity is obtained by defin-
ing abstract data types and procedures for different tasks. A larger
system may be defined as a collection of cooperating processes. In
both cases, the modules may all be executed on s single computer.
But it is also possible to have a local-area network with different
types of computers, one equipped with dedicated hardware for num-
ber crunching, another with graphical hardware, a third with disks,
etc.

1.1.2 Computer Networks

By a computer network we mean a collection of computers, connected by
communication mechanisms by means of which the computers can exchange
information. This exchange takes place by sending and receiving messages.
Computer networks fit our definition of distributed systems. Depending on
the distance between the computers and their ownership, computer networks
are called either wide-area networks or local-area networks.

