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Mechanical behaviors of materials are highly influenced by their
architectures and/or microstructures. Hence, progress in material
science involves understanding and modeling the link between the
microstructure and the material behavior at different scales.

This book gathers contributions from eminent researchers in the field of
computational and experimental material modeling. It presents
advanced experimental techniques to acquire the microstructure
features together with dedicated numerical and analytical tools to take
into account the randomness of the micro-structure.

Macro phenomenological models based on a fine modeling of the key
phenomena at the micro-scale are presented and the influence of the
parameters of the micro-scale models are analyzed in terms of their
effects on the behavior at the upper scales.

Finally, this book illustrates how the increasing complexity of models
brings challenging issues related to identification and simulation and
presents on-the-edge numerical strategies to overcome those issues.
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France. Her research works fit into the field of computational mechanics
with a particular interest in modeling inelastic materials until rupture.

Pierre Feissel is Professor in the Department of Mechanical Engineering
at the University of Technology of Compiegne, France. His research work
is dedicated to the bridging between computational and experimental
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Preface

Mechanical behaviors of materials are highly influenced by their
microstructures. Therefore, progress in material science aims at
understanding and modeling the link between the microstructure and
the material behavior at different scales. This book comprises
contributions from eminent researchers in the field of computational
and experimental material modeling. The book focuses on
experimental techniques, modeling approaches and computational
strategies to understand and predict the behavior of materials in
relation to its architecture and microstructure at different scales.
Special attention is paid to the coupling of experimental techniques
with advanced modeling tools, numerically or analytically.

The first four chapters are dedicated to the reconstruction of
representative volume element (RVE) for different kinds of materials to
study the mechanical behavior at the macro-scale. Advanced
experimental techniques along with dedicated numerical and analytical
tools are presented to efficiently analyze and represent the
microstructural features. These tools are used to study synthetic
materials, the key properties of RVEs, and to construct the behavior at
the macro-scale through homogenization. The role of the randomness
of the microstructure in the macro-scale behavior is also investigated,
and stochastic dedicated tools are presented.

The following three chapters focus on complex mechanical
behavior modeling at the macro-scale. Different modelization and
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simulation techniques are presented. These chapters discuss how the
applications considered above enable the use and adaptation of
numerical tools to analyze complex behaviors. The macro
phenomenological models are based on a better understanding and
modeling of key phenomena at the micro-scale, including
multi-physics. The influence of the parameters of micro-scale models
is analyzed in detail with respect to the macro-scale behavior.

The increasing complexity of models brings challenging issues
related to identification and simulation. Due to these issues, models
must be identified from complex experiments that are monitored richly,
to imply the large amount of data. Dedicated identification strategies
must be developed based on simulation, thereby requiring model
reduction techniques. These reduction techniques will also be a key
tool for large-scale (in terms of CPU time) predictive simulation, and
new trends in data-driven simulations take advantage of the
experimental data to propose a new modeling paradigm. The last two
chapters focus on these issues.

This book is a collection of selected papers from the invited lectures
presented at the 9th US-France symposium: “From microstructure
observations to multi-scale modeling of deformation mechanisms and
interfaces”. This symposium was held in Compieégne in June 2016
under the auspices of the International Center for Applied
Computational Mechanics, Compiegne, France, 1-3 June 2016.

We would like to thank all the ICACM participants for their lively
exchanges, especially the authors of the chapters for their contributions.

Delphine Brancherie
Pierre Feissel

Salima Bouvier

Adnan Ibrahimbegovié¢
September 2017
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Synchrotron Imaging and Diffraction for
In Situ 3D Characterization of
Polycrystalline Materials

1.1. Introduction

The last few years have seen material science progressing rapidly
into three-dimensional (3D) characterization at different scales (e.g.
atom probe tomography [PHI 09], transmission electron microscopy
tomography [WEY 04], automated serial sectioning tomography
[UCH 12, ECH 12] and X-ray tomography [MAI 14]). A wealth of 3D
data sets can now be obtained with different modalities, allowing the
3D characterization of phases, crystallography, chemistry, defects or
damage and in some cases strain fields.

In the last 10 years, one particular focus of the 3D imaging
community (like 2D in its time with the advent of EBSD
characterization) has been on obtaining reliable three-dimensional
grain maps. As most structural materials are polycrystalline and the
mechanical properties are determined by their internal microstructure,
this is a critical issue. There has been considerable effort to develop
characterization techniques at the mesoscale, which can image

Chapter written by Henry PROUDHON.
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typically 1 mm? of material with a spatial resolution in the order of
micrometers.

Among 3D characterization, an important distinction exists between
destructive and non-destructive techniques. Serial sectioning relies on
repeated 2D imaging (which may include several modalities) of
individual slices, where a thin layer of material is removed between
each observation (see Figure 1.1(a,b)). The material removal can be
achieved via mechanical polishing [ROW 10], ion [DUN 99, JIR 12] or
femtosecond laser ablation [ECH 15] in a dedicated scanning electron
microscope (SEM). Considerable progress has been made in this line
in the last decade, bringing not only high-quality measurements in 3D
of grain sizes and orientations but also detailed grain shapes and grain
boundary characters. The most serious threat of serial sectioning is,
however, the destruction of the sample.

In parallel, the advent of third-generation synchrotrons worldwide,
with ESRF at the forefront, brought hard X-rays, with their high
penetrating power, to the structural material science community. X-ray
computed tomography (CT) rapidly developed as a key observation
tool, allowing the non-destructive bulk evaluations of all types of
materials [MAI 14]. This made the in situ study of damage possible
using specifically designed stress rigs [BUF 10]. Unfortunately, CT
imaging relies on absorption and phase contrasts and remains blind to
crystal orientation. Accessing crystallographic information in the bulk
of polycrystalline specimens (average orientation per grain) was
subsequently achieved using the high penetrating power of hard X-rays
and leveraging diffraction contrast. The pioneering work of Poulsen
took advantage of high-brilliance synchrotron sources to study
millimeter-sized specimens by tracking the diffraction of each
individual crystal within the material volume while rotating the
specimen over 360°. This led to the development of 3DXRD [POU 04]
and 1its several grain mapping variants (DCT [LUD 08], HEDM
[LIE 11], DAGT [TOD 13]). Among them, the near-field variant called
diffraction contrast tomography (DCT, see Figure 1.1(c)) will be
detailed in section 1.2.7.



