R

Bttt T 72

— (RIhR - SB7hR)

SOMMERVILLE

Ll software
J Engineering
i 1]
L 'é;.

-

= lan Sommerville
(%) CLrmss .

B Machins ot

China Machine Press

SR

e

pe
t
[}
£
£
?
=
s

(RMhR - SB7hR)

(2%)

i T I

fan Sommerville: Software Engineering. Seventh Edition (ISBN 0-321-210206-3).

Copyright © 1989, 2001, 2004 by Pearson Education Limited.

This edition of Software Engineering. Seventh Edition is published by arrangement with

of China only. excluding Hong Kong, Macao, and Taiwan.

Pcarson Education Limited. Licensed for sale in the mainland territory of the People’s Republic

A5 3 SCREENAR |1 % [§ Pearson Education Limited (BAHHE HREH) SR, &

£ E BRI . ARLUER T KEHISD ZABAR.

BERENRR AU RR 7 b [A BEHE I # 8 (A ELAE i, B). EEK).
WA BERER .

ABREAEHICE: BP: 01-2004-5731

EBERBRKE (CIP) ¥R
B TE (B - EB78) / (%) (5848 (Sommerville, 1.) ¥#. —db3t

WM s, 2004.11

(B RFIRBIE)
154,06 3 Software Engineering, Seventh Edition
ISBN 7-111-15309-X

1.8 0.8 W &HETIER-%Xx V.TP3ILS
o E AR R B S TECIPEE B v (2004) 0988795

HUBE Tl H RS (s dr sk 7 9 K22 % WBBCGRES 100037)
HERE: BiRE

Je s ENRI A BRA AENR] - B EBEILRRIT R T
2004411 B8 R LIRENRI

787mm = 1092mm 1/16 - 49.25E)3k

Ell%: 0001-3 000#}

A 75.009C

LA, A ST, B, sol. AR ITHiMGR
A Bes: (010) 68326294

© HLMR Tk

tHhRE 89S

XEHEPLLLRE, ﬂﬁi@?ﬁﬁ&ﬂ@ﬂ’i‘*ﬁ?**ﬂ%iﬁ?ﬁim%*ﬂ?ﬁ, EH EREEABENE
GBS T MRS thiE R R, EEEEFLBRRRINTSERARE
. SRS, ERLEREE, EEMT LR SRE FAREEERE S, HREHLERS
B % % 00 2 B & b BRI BCF O B ATk, R E S e 22 E, AOUER|THA
HimGE, BIBETHERMELE, BEEERME. XBAREEME, KMEHASEE AWK
At il R

LA, EEREBAKEO#ED T, REMUHBEN”LERRBE, ¥ E VAT RAE
EY, X PENEFTR MUK AEBEENE, WEKSE mMELEMNWBRIEAEHTRE LD
MHERE. AREGFEREHEAREMEBIEE. AEARKDHIRT, XEFEEERKAERT
BHLR# ARG T ERBIRNSHEM RS EBELZL. FHik, si#E—#EMFIT
FHLEM A BRI EILEE SR BREBRNOENER. bS5t REi. RIFHEAH
H— i KFER LR ZE.

HLA Tl th i st 3 O BABRA SRR EINS “HREAKFIRS”. BI19984ET 4,
R AR TR E A AE Tk BIEESMEFIEM L. BFILENTWE S, B&iE
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZtt R E L BB A GEY T
RARIEERFR. WENBA RS E Rk ik B Tanenbaum, Stroustrup, Kernighan, Jim
GrayF AIMARKW -~ L BMES, L “IHEIBEAE" AERER, SigEes. HRRE
W KBEATEPRE . hIEAB TXEMN BRI,

CHEHLBHEAS” R TESS TEANMEEN R DR, EANESRARE T+
HEBHRS . EAEES S e TRIEMSERN T MEBOES Y X E R EF
WG HE, AL SRAR BT ERERFR. £4, “HEILREAS ESHR TEEA R
B, XEBBAREPR TRENOB, HETFSHEERHAAEARHNSEEE, bit—
R SRBIT T 7RSSR R,

BiEFRR IS T EMBEM K ERRNEL, BF R E M EHLH 1 E KR f
HEA DB B. A, CEARHMASIHZMG DR, £ “LEKT HOARRZ T
HAR ARSI LFBALEH: B “UHHEHLRI A" 24h, S BLENAR AUkt T8 5k JF B2
CRBUSRRCBIET 5 EE, SIESXEBTFEME S “Schaum’s Outlines” F FI4A & ‘2EH
WENEF RN, A TRIEX ZEMNBRIEN, [RIE 04 T SE 47 sb A BTN EIF1IR %5
ERAERIE T RE R, LRAE. EEAk%. BRI AZE. FHKA%. FEAZRAE.
RIRURE. WHLK%. hEBE A, MRETIAS. BELEAR. HEARAZ. El -
7SR K. LSRR A%, FUIKY, BREBET K%, BMA%. WML TeE. HEE

iv

FAE B RAWEAES.OFEAE S KEREFHLSE T IR E R ELEELAKR %
KIMGFERE", ABRMHREEGE AR E

RN PR R R BOE DR RO R AMR B IS B A BN BRI R AT LR
BORRHITEN. R 282 HM. 1. T., Stanford, U.C. Berkeley, C. M. U. %5} £,
MOASFRIRA. ARE TRIFIRIE. BIEH. BIERK. HENKREH. SUBE. RiF
JRER. LR, BEE. @EE5NE. SREFFEAKRFIENS IR RIS LIRE,
mE&ARC—ANHAESRIIFEZT. ANHL=1TEMAR. AHNCH2EFAILE
i iR (EX R BGE AR ERIESI 2T, RELBETREINRENE R HEE
MA%E.

RIS . SIEM . —RNEE. PROER. BANWRE, XEREERMNVE
BATREMRKRIE, ERMNAHBEERERE, RBOERLERKRINMNEIX &K BNE
BB, B RE RN ES kA, A G0N IR fnigd 3 010 TR H
BILHBAFHIE, BRIMERSSHMT

i -FHlF: hzedu@hzbook.com
BABIE: (010) 68995264

B uht: bR mERX L ERElS
BB 4afD: 100037

ERXESERE

5 2
FHhE
Fidi AR 49
B 2 &
R E R
= &

Ay

(0 2 i G)

ERLES
IEF
07 %
i &5

£ e
Z &
FRP
% o) 2%
FE 5
ES Y
42 7

£ £
2 M
RS
R4
EW
fE R
AL 3

The first edition of this textbook on software engineering was published more than
twenty years ago. That edition was written using a dumb terminal attached to an
early minicomputer (a PDP-11) that probably cost about $50,000. T wrote this edi-
tion on a wireless laptop that cost less than $2,000 and is many times more pow-
erful than that PDP-11. Software then was mostly mainframe software, but personal
computers were just becoming available. None of us then realised how pervasive
these would become and how much they would change the world.

Changes in hardware over the past twenty or so years have been absolutely remark-
able, and it may appear that changes in software have been equally significant.
Certainly, our ability to build large and complex systems has improved dramati-
cally. Our national utilities and infrastructure—energy, communications and trans-
port—rely on very complex and, largely, very reliable computer systems. For
building business systems, there is an alphabet soup of technologies—J2EE, .NET,
EJB, SAP, BPEL4WS, SOAP, CBSE—that allow large web-based applications to
be deployed much more quickly than was possible in the past.

However, although much appears to have changed in the last two decades, when
we look beyond the specific technologies to the fundamental processes of software
engineering, much has stayed the same. We recognised twenty years ago that the water-
fall model of the software process had serious problems, yet a survey published in
December 2003 in /EEE Software showed that more than 40% of companies are still
using this approach. Testing is still the dominant program validation technique,
although other techniques such as inspections have been used more effectively since
the mid 1970s. CASE tools, although now based around the UML, are still essen-
tially diagram editors with some checking and code-generation functionality.

viii

Preface

Our current software engineering methods and techniques have made us much
better at building large and complex systems than we were. However, there are still
too many projects that are late, are over budget and do not deliver the software that
meets the customer’s needs. While I was writing this book, a government enquiry
in the UK reported on the project to provide a national system to be used in courts
that try relatively minor offenders. The cost of this system was estimated at £156
million and it was scheduled for delivery in 2001. In 2004, costs have escalated to
£390 million and it is still not fully operational. There is, therefore, still a pressing
need for software engineering education.

Over the past few years, the most significant developments in software engineering
have been the emergence of the UML as a standard for object-oriented system descrip-
tion and the development of agile methods such as extreme programming. Agile
methods are geared to rapid system development, explicitly involve the user in the
development team, and reduce paperwork and bureaucracy in the software process.
In spite of what some critics claim, I think these approaches embody good software
engineering practice. They have a well-defined process, pay attention to system spec-
ification and user requirements, and have high quality standards.

However, this revision has not become a text on agile methods. Rather, I focus
on the basic software engineering processes—specification, design, development,
verification, and validation and management. You need to understand these processes
and associated techniques to decide whether agile methods are the most appropri-
ate development strategy for you and how to adapt and change methods to suit your
particular situation. A pervasive theme of the book is critical systems—systems whose
failure has severe consequences and where system dependability is critical. In each
part of the book, I discuss specific software engineering techniques that are rele-
vant to critical systems engineering.

Books inevitably reflect the opinions and prejudices of their authors. Some read-
ers will disagree with my opinions and with my choice of material. Such disagree-
ment is a healthy reflection of the diversity of the discipline and is essential for its
evolution. Nevertheless, 1 hope that all software engineers and software engineer-
ing students can find something of interest here.

The structure of the book

The structure of the book is based around the fundamental software engineering
processes. It is organised into six parts with several chapters in each part:

Part 1: Introduces software engineering, places it in a broader systems context
and presents the notions of software engineering processes and management.

Preface ix

Part 2: Covers the processes, techniques and deliverables that are associated with
requirements engineering. It includes a discussion of software requirements, system
modelling, formal specification and techniques for specifying dependability.

Part 3: This part is devoted to software design and design processes. Three out
of the six chapters focus on the important topic of software architectures. Other
topics include object-oriented design, real-time systems design and user inter-
face design.

Part 4: Describes a number of approaches to development, including agile meth-
ods, software reuse, CBSE and critical systems development. Because change is
now such a large part of development, I have integrated material on software
evolution and maintenance into this part.

Part 5: Focuses on techniques for software verification and validation. It
includes chapters on static V & V, testing and critical systems validation.

Part 6: The final part covers a range of management topics: managing people,
cost estimation, quality management, process improvement and configuration

management.

In the introduction to each part, I discuss the structure and organisation in more
detail.

Changes from the 6th edition

Table 1 Chapter
revisons

There are significant changes to the organisation and content from the previous edition.
I have included four new chapters and made major revisions of 11 other chapters. All
other chapters have been updated and, where appropriate, new material has been added.
More and more systems have high availability and reliability requirements, and I believe
that we have to consider dependability as a basic driver for software engineering, so
the chapters on critical systems have now been integrated into other sections. To avoid
content creep, I have reduced the amount of material on software maintenance and have
integrated material on maintenance and evolution with other chapters in the book. There
are two running case studies—one on a document management system used in a library
and the other on a medical system—that I draw on in several chapters.

The case study material is indicated by margin icons. Table | summarises the changes,
with the number in parentheses indicating the corresponding chapter in the 6th edi-
tion. Further information on the changes is available on the book’s web site.

New chapters

Chap. 13: Application architectures

Chap. 17: Rapid software development

Chap. 19: Component-based software engineering
Chap. 21: Software evolution

x Preface

Readership

Chapters with significant new material and/or major structural revisions

Chap. 2: Socio-technical systems (2)

Chap. 4: Software processes (3)

Chap. 7: Requirements engineering processes (6)
Chap. 9: Critical systems specification (17)
Chap. 12: Distributed systems architectures (11)
Chap. 16: User interface design (15)

Chap. 18: Software reuse (14)

Chap. 23: Software testing (20)

Chap. 25: Managing people (22)

Chap. 24: Critical systems validation (21)

Chap. 28: Process improvement (25)

Updated chapters

Chap. 1: Introduction (1)

Chap. 3: Critical systems (16)

Chap. 5: Project management (4)

Chap. 6: Software requirements (5)

Chap. 8: System models (7)

Chap. 10: Formal specification (9)

Chap. 11: Architectural design (10)

Chap. 14: Object-oriented design (12)
Chap. 15: Real-time systems design (13)
Chap. 20: Critical systems development (18)
Chap. 22: Verification and validation (19)
Chap. 26: Software cost estimation (23)
Chap 27: Quality management (24)

Chap. 29: Configuration management (29)

Deleted chapters

Software prototyping (8)
Legacy systems (26)
Software change (27)
Software re-engineering (28)

The book is aimed at students taking undergraduate and graduate courses and at
software engineers in commerce and industry. It may be used in general software
engineering courses or in courses such as advanced programming, software speci-
fication, and software design or management. Software engineers in industry may
find the book useful as general reading and as a means of updating their knowl-
edge on particular topics such as requirements engineering, architectural design,
dependable systems development and process improvement. Wherever practicable,
the examples in the text have been given a practical bias to reflect the type of appli-
cations that software engineers must develop.

Preface «xi

Using the book for teaching

I have designed the book so that it can be used in three types of software engi-

neering course:

General introductory courses in software engineering For students who have no
previous software engineering experience, you can start with the introductory section
then pick and choose chapters from the other sections of the book. This will
give students a general overview of the subject with the opportunity of more
detailed study for those students who are interested. If the course’s approach
is project-based, the early chapters provide enough material to allow students
to get started on projects, consulting later chapters for reference and further infor-

mation as their work progresses.

Introductory or intermediate courses on specific software engineering topics
The book supports courses in software requirements specification, software design,
software engineering management, dependable systems development and soft-
ware evolution. Each part can serve as a text in its own right for an introduc-
tory or intermediate course on that topic. As well as further reading associated
with each chapter, I have also included information on other relevant papers

and books on the web site.

More advanced courses in specific software engineering topics The chapters
can form a foundation for a specific software course, but they must be sup-
plemented with further reading that explores the topic in greater detail. For exam-
ple, I teach an MSc module in systems engineering that relies on material here.
I have included details of this course and a course on critical systems engi-

neering on the web site.

The benefit of a general text like this is that it can be used in several related

courses. At Lancaster, we use the text in an introductory software engineering course
and in courses on specification, design and critical systems. Courses on component-
based software engineering and systems engineering use the book along with addi-
tional papers that are distributed to students. Having a single text presents students
with a consistent view of the subject—and they don’t have to buy several books.

To reinforce the student’s learning experience, [have included a glossary of key

terms, with additional definitions on the web site. Furthermore, each chapter has:

A clearly defined set of objectives set out on the first page

A list of key points covered in the chapter

Suggested further reading—either books that are currently in print or easily avail-
able papers (lists of other suggested readings and links can be found on my

web site)
Exercises, including design exercises.

xii Preface

Web pages

The Software Engineering Body of Knowledge project (http://www.swebok.org)
was established to define the key technical knowledge areas that are relevant to pro-
fessional software engineers. These are organised under 10 headings: requirements,
design, construction, testing, maintenance, configuration management, manage-
ment, process, tools and methods, and quality. While it would be impossible to cover
all of the knowledge areas proposed by the SWEBOK project in a single textbook,
all of the top-level areas are discussed in this book.

The web site that is associated with the book is:

http://www software-engin.com

This offers a wide range of supplementary material on software engineering. From
there, you can access web pages dedicated to supporting both this and previous edi-

tions of Software Engineering.
It has been my policy, both in the previous edition and in this edition, to keep

the number of web links in the book to an absolute minimum. The reason for this
is that these links are subject to change and, once printed, it is impossible to update
them. Consequently, the book’s web page includes a large number of links to resources
and related material on software engineering. If you use these and find problems,

please let me know and I will update the links.
To support the use of this book in software engineering courses, I have included

a wide range of supplementary material on the web site. If you follow the Material
for Instructors links, you can find:

e Lecture presentations (PowerPoint and PDF) for all chapters in the book

¢ Class quiz questions for each chapter

* Case studies

* Project suggestions

* Course structure descriptions

* Suggestions for further reading and links to web resources for each chapter

* Solutions for a selection of the exercises associated with each chapter and for
the quiz questions (instructor’s only).

I welcome your constructive comments and suggestions about the book and the
web site. You can contact me at ian@software-engin.com. I recommend that you
include [SE7] in the subject of the e-mail message to ensure that my spam filters
do not accidentally reject your mail. I regret that I do not have time to help stu-

Preface xiii

dents with their homework, so please do not ask me how to solve any of the prob-
lems in the book.

Acknowledgements

A large number of people have contributed over the years to the evolution of this
book and I'd like to thank everyone (reviewers, students and book users who have
e-mailed me) who has commented on previous editions and made constructive sug-
gestions for change. The editorial and production staff at Pearson Education in England
and the US were supportive and helpful, and produced the book in record time. So
thanks to Keith Mansfield, Patty Mahtani, Daniel Rausch, Carol Noble, and Sharon
Burkhardt for their help and support.

Finally, I'd like to thank my family, who tolerated my absence when the book
was being written and my frustration when the words were not flowing. A big thank-
you to my wife, Anne, and daughters, Ali and Jane, for their help and support.

lan Sommerville,
February 2004

Part 1

Chapter 1

Chapter 2

vii

Preface
Overview 1
Introduction 3
1.1 FAQs about software engineering 5
1.2 Professional and ethical responsibility 14
Key Points 17
Further Reading 18
Exercises 18
Socio-technical systems 20
2.1 Emergent system properties 23
2.2 Systems engineering 25
2.3 Organisations, people and computer systems 34
2.4 Llegacy systems 38
Key Points 40
Further Reading 4
41

Exercises

xvi Contents

Chapter 3 Critical systems

3.1
3.2
3.3
34
3.5

A simple safety-critical system
System dependability
Availability and reliability
Safety

Security

Key Points
Further Reading
Exercises

Chapter 4 Software processes

4.1
4.2
4.3
4.4
4.5

Software process models
Process iteration

Process activities

The Rational Unified Process

Computer-Aided Software Engineering

Key Points
Further Reading
Exercises

Chapter 5 Project management

5.1
5.2
53

54

Management activities
Project planning
Project scheduling

Risk management

Key Points
Further Reading
Exercises

43

46
47
51
55
58

60
61
61

63

65
7
74
82
85

89
90
91

92

94
96
929
104

111
112
112

Contents xvii

Part 2

Chapter 6

Chapter 7

Chapter 8

Requirements 115
Software requirements 117
6.1 Functional and non-functional requirements 119
6.2 User requirements 127
6.3 System requirements ‘129
6.4 Interface specification 135
6.5 The software requirements document 136
Key Points 140
Further Reading 140
Exercises 1M
Requirements engineering processes 142
7.1 Feasibility studies 144
7.2 Requirements elicitation and analysis 146
7.3 Requirements validation 158
7.4 Requirements management 161
Key Points 166
Further Reading 167
Exercises 167
System models 169
8.1 Context models 17
8.2 Behavioural models 173
8.3 Data models 177
8.4 Object models 181
8.5 Structured methods 187
Key Points 190
Further Reading 191

191

Exercises

xviii Contents
Chapter 9 Critical systems specification 193
9.1 Risk-driven specification 195
9.2 Safety specification 202
9.3 Security specification 204
9.4 Software reliability specification 207
Key Points 213
Further Reading 214
Exercises 214
Chapter 10 Formal specification 217
10.1 Formal specification in the software process 219
10.2 Sub-system interface specification 222
10.3 Behavioural specification 229
Key Points 236
Further Reading 236
Exercises 237
Part 3 Design 239
Chapter 11 Architectural Design 241
11.1 Architectural design decisions 245
11.2 System organisation 247
11.3 Modular decomposition styles 252
11.4 Control styles 256
11.5 Reference architectures 260
Key Points 263
Further Reading 264
Exercises 264
Chapter 12 Distributed Systems Architectures 266
269

12.1 Multiprocessor architectures

