KEHENBERMEZEHRT (RZEDAR)

CLASSIC DATA
STRUCTURES IN JAVA

SRS

(JavaiZ E M)

Timothy Budd

B AR AL

English reprint edition copyright © 2005 byPEARSON EDUCATION ASIA LIMITED and TS-
INGHUA UNIVERSITY PRESS. v

Original English language title from Proprietor’ s edition of the Work.
Original English language title: Classic Data Structures in Java by Timothy Budd, Copyright © 2001
All Rights Reserved.

Published by arrangement with the original publisher, Addison-Wesley, publishing as Addison-Wes-
ley.

This edition is authorized for sale and distribution only in the People’ s Republic of China (excluding
the Special Administrative Region of Hong Kong, Macao SAR and Taiwan).
A EBRE Pearson Education(BE & HRER) BB B ERFEHRILBIE T,

For sale and distribution in the People’ s Republic of China exclusively (except Taiwan, Hong Kong
SAR and Macao SAR).

(PR TF bt A RSCRESE A (RIS H & U TR T B IX AP E A X) 8518 K 17 .
AH AR EERAFBILS BT 0120024511

FEARETA, BREDAST, $EMAIE: 01062782989 13501256678 13801310933
A BHEWF Pearson Education (3R E HIRER) MABHHIFE, THREETBHHE,

B BIERR B (CIP) &%

£ R SE M = Classic Data Structures in Java/(%) ELfE(Budd, T.) ¥ . —EIA . —it5,
R AL, 2005. 7

(KFHRHLEH WS E 7 50 £3)

ISBN 7-302-11154-5

[0. B L QFEREI—B S B —H M —3% LQIAVA I 5 —BF I —7
G —HM R V. TP311. 12)

I EIASAR B 454 CTP i 4% 57 (2005) 45 058947 £

Y M & W REN R Mo Hb: JEEHRERFERERE
http://www. tup. com.cn ~ H#iff 5. 100084
it B #l. 01062770175 HEFRRS: 010-62776969

: JCa i e e

s SRR IT AR A

s BB BE IR R

: 148 x210 EP¥: 19.375

: 2005 4F7 A 1R 2005 4E 7 A 281 KETR)

. ISBN 7-302-11154-5/TP - 7370

. 1 ~3000

. 43.00 76

=

SR
S5 g9 o S5 B B b

B34 & H RER S

tH hi % BA

HEA 21 iR, HRFENET ., PG G E AR E R E
MR FEHPLRERMATRES . EHARBHRIEMA
A, WEREETEE F BB IEE . SEHE, FIEREERALHH
o, LAZERHEER. BARESFHEROAMERTRE, TN
RECHESEFT R, BH W IEAE K) e Bt 3 B 5 AR B E SME R
#M o

WHERFHBAEN 1996 ETF 8, SEMERBBAREE, #
EDHAR T KRR E A CRERR) "% - RII5ER B, %3
EINBEERVGR M. BA 21 e, RIOAEAREREHEHL
MRS NHE, EEAREM L, #—29 REENE, SER
PHART, — BRI A X Pkt iE TR E & S AR R
A BHHE RSN RHMEE 2B, dRAE KETEIH
HESNE BB RTNGLERR) ", LMREEE . WUIBBEE Rkl
A ZRIEMBBR MBI BAEN EREENEE . AREK
RAVEFRIMHENBE WL E B, URBRNE KF TR
BEANFZEMRICEO) " MG EL, FEERRMENTE,

EHRREH RAE

PREFACE

The study of data structures is historically one of the first steps a student
takes in the process of learning computer science as a discipline. Data
structures play a fundamental role in almost every aspect of computer
science and are found in almost every nontrivial computer program. Fur-
thermore, the analysis of data structures may represent the first time the
student encounters a number of key concepts:

The relationship between an algorithm (an abstract approach used to
solve a specific problem) and a method [the code written in a specific
language, such as Java, that embodies the ideas of an algorithm)

The division of a large program into smaller independent units and, more
important, the idea that these units can be characterized by an interface
independently of their implementation

The extension of this separation of interface and implementation to the
concept of an abstract data type, or ADT

The reuse of standard software components in the development of new
applications

The fact that several different reusable software abstractions may satisfy
the same interface and how one goes about selecting the proper compo-
nent for a particular application

The use of formal techniques to reason about both algorithms and
programs—for example, how to argue that an algorithm will always ter-
minate, regardless of its input values

The techniques used to frame a proof of correctness for an algorithm or
a method and the observation that such a proof is an essential part of
software development

The idea that an algorithm can be characterized by its execution-time
performance in a fashion that is independent of any particular machine
or programming language

PREFACE

& The relationship between mathematical concepts, such as induction,
and software concepts, such as recursive procedures

And last, but not least, the student becomes familiar with a variety of
specific tools that have proved themselves, over a period of many years,
to be useful techniques for maintaining large collections of elements. The
ideas embodied in these tools and techniques are so ingrained in computer
science that they can truly be said to represent the essential foundation on
which all the rest of computer science is built and the essential vocabulary
in which all of computer science is discussed.

FEATURES OF THIS BOOK

Features of this book that make it different from many other data struc-
tures textbooks in common use include the following:

» The object-oriented mindset is applied throughout. Object-oriented orga-
nization is discussed from the very beginning, and object-oriented tech-
niques are used in the development of all examples.

The clear separation between ADT [interface) and implementation is
emphasized throughout. The various categories of containers are first de-
scribed as data types, independent of any implementation. These ADT
descriptions are given as narrow (that is, small] interfaces. Data struc-
tures are then introduced as realizations of the interfaces. Most data
structures implement several different interfaces, showing that the same
container can be used in many different ways.

A rigorous approach to development is encouraged. Techniques for de-
veloping formal proofs of programs are presented, and proofs of programs
appear throughout the text.

Sprinkled throughout the book are suggested experiments that will lead
the student in exploring further aspects of data structures in more detail.
A typical experiment will investigate, for example, the impact that data
ordering will have on the execution time of a sorting procedure.

As an aid to performing these experiments, the book provides tools that
make it easy to create a visual record of execution time. The combina-
tion of a hands-on experiment coupled with a visual display is an effec-
tive tool for reinforcing the lessons gained from an analytical dissection
of the algorithms embedded in a data structure.

s Important software patterns are highlighted, and the use of patterns is
emphasized from the beginning.

Preface xvii

Graphical elements of Java are used to the reader’s advantage. Many stu-
dents are attracted to the graphical elements of Java. Yet graphical appli-
cations can quickly become complex, and the important lessons about
data structures must not be lost in the process of creating a nice visual
output. The graphical examples have been carefully chosen to minimize
the unnecessary detail and to emphasize the important lessons.

Sidebars are used for additional information. Throughout the text, a key
linear narrative is almost always being presented. Often, additional or
incidental information would help the reader but might detract from
the narrative flow. In these situations, the information has been placed
into boxes. Readers can then peruse the additional information as they
choose.

Each chapter ends with a chapter summary, a collection of key terms,
and a series of study questions that the student can use to evaluate
his or her understanding of the material. Study questions are designed
so that a student who understands the material should be able to give
an immediate and simple answer. In constrast, exercises require more
thought and time, even if a student has understood the chapter. Finally,
each chapter ends with a series of programming projects. These can be
used as jumping-off points for instructors in the creation of projects for
their own courses.

ASSUMED BACKGROUND

It is assumed that the student using this book will have had at least
one course that introduced programming using Java. The book also as-
sumes that the student has some mathematical background, generally no
more than is typically found in high school mathematics. For example,
we assume that the student has seen the definition of a logarithm and is
familiar with the terms polynomial and exponential. Students who have
some background in programming but not in Java should read Appendix A
to learn more about the language.

How THIS BOOK IS ORGANIZED

= Tools and techniques: Chapters 1 through 5 provide the foundation®n
which everything else will be built. These chapters define the essential
concept of the abstract data type (ADT} and describe the tools used in
the evaluation and analysis of data structures.

xviii PREFACE

s Basic data abstractions: Chapters 6 and 8 provide detailed descriptions of
the two most important fundamental data abstractions: the vector and
the linked list. Chapters 7 and 9 each provide an explanation of some of
the more common variations on these fundamental ideas. Many of the
sections in these latter chapters are marked as optional material and can
be omitted at the discretion of the instructor.

Insertion order—preserving containers: Chapters 10, 11, and 12 consider
data structures applicable to problems in which the order that values are
added to a collection is important. These data structures can be divided
into three broad categories, each considered in a separate chapter.

Trees and their uses: Chapters 13, 14, and 15 consider the various ways
in which binary trees are used in the creation of data structures. Binary
trees are important in providing a natural way to repeatedly reduce the
size of a problem by half and thus permit efficient solution to many
problems.

Advanced data structures: Chapters 16 through 19 consider a sequence of
more advanced data structures. Most are constructed as adapters built on
top of earlier abstractions. Hash tables are introduced first as a technique
for implementing simple collections and only later (in Chapter 17) as
a tool for developing efficient maps. Many data structure texts explore
hash tables only as a key/value data structure, leaving the mistaken
impression that this is their only use.

Algorithms: Chapter 20 considers the graph data type. Here, several
alternative data structure representations are in common use, and the
emphasis in this chapter is more on the development and analysis of
useful algorithms than on any particular data structuring technique.

Appendix A provides a quick overview of Java syntax. This material
is useful for students who come to this course with a background in a
different programming language.

ToPics BY PREREQUISITES

No one order of presentation can hope to suit all situations. Students in
different institutions will have different backgrounds. Some instructors
will want to take a more mathematical approach to this material; others,
a more software engineering approach. Some instructors will think that
SkipLists [to take just one example| are eye opening and therefore fun-
damental to the purpose of this course; others may think that the same
abstraction is far too complex and should be omitted altogether.

Preface xix

I have endeavored to satisfy these diverse requirements in a number
of ways. Many of the interesting but nevertheless tangential ideas en-
countered during the development of the classic data structures have been
placed in sidebars, which can be emphasized or ignored at the instructor’s
discretion. Similarly, many sections are marked as optional. The instructor
is free to pick and choose those optional sections as interest and schedules
dictate.

Even the order of entire chapters can be rearranged. The order given here
seemed most natural to me, but I nevertheless realize that natural in some
cases may reflect more than a little personal bias. I will therefore explicitly
describe the prerequisite chain, leaving open the possibility of approaching
the material in a slightly different order.

The first five chapters are fundamental and should be covered in the
order presented. However, the amount of time one elects to spend on these
chapters can be adjusted, depending on the background the students will
have acquired in their earlier courses. {The same can be said of the first
appendix. Appendix A can be omitted if students have had previous courses
in Java programming, but may need to be covered in detail if students’
previous programming has been in a different language.)

Once past the introductory material, the order of dependencies between
chapters can be described as follows:

9

8
10,11, 12
7

1-5 6 18

15

13
14

16 > 17 -+ 19 - 20

Chapters 6 (vectors) and 8 (linked lists) need no more than an under-
standing of abstract data types, which is developed in Chapter 2. Chapter 7
{sorted vectors) presents variations on the topics of Chapter 6. In a simi-
lar fashion, Chapter 9 (list variations) discusses variations on the theme of
linked lists introduced in Chapter 8. Much of the material in Chapters 7
and 9 is marked as optional; although interesting, it can be omitted with
little impact on understanding the rest of the material in the text.

XX PrEFACE

Chapters 10, 11, and 12 (stacks, deques, and queues, respectively] repre-
sent one large unit divided over three chapters. They require only the basic
ideas developed in Chapters 6 and 8. The order of Chapters 11 and 12 is
largely arbitrary. Doing 12 before 11 makes more sense from a formal or
mathematical perspective, whereas doing 11 before 12 makes more sense
from a software engineering perspective. However, either order is possible.

Chapter 13, on trees, is fundamental to both Chapters 14 (binary search
trees) and 15 [priority queues, heaps). However, the order of the latter two
chapters is arbitrary and can easily be reversed.

Chapter 16, on hash tables, does not depend on anything other than the
basic ADT definitions {from Chapter 2} and a certain level of comfort in the
analysis of algorithms (as will be gained throughout the book). Chapter 16
can be easily moved earlier in the course if the instructor so desires.

Chapter 17, on maps, depends loosely on Chapter 16 and more strongly
on Chapters 8 and 14. Chapter 17, too, could easily be moved earlier in the
course if the instructor so desires.

Chapter 18, on sets, depends on Chapter 7 and slightly more loosely on
Chapters 8 and 14. If the material in Chapter 7 was slighted or omitted
earlier in the course, it can easily be brought forth into this chapter.

Chapter 19, on matrices, depends only loosely on Chapter 17. Many in-
structors like to present the first part of this chapter much earlier, linking
the matrix idea to the concept of the vector developed in Chapter 6. This
can be accommodated by omitting Sections 19.7 and 19.8, which contain
the only real dependencies on Chapter 17.

Finally, Chapter 20 does build on the matrix concepts discussed in Chap-
ter 19. However, if Chapter 19 is moved earlier in the course, so too can
Chapter 20.

ADVANTAGES OF USING JAVA

As a vehicle for teaching, Java is a great advance over many of the alterna-
tive langauges, such as C++ or Pascal. Unlike Pascal, Java forces the student
to adopt an object-oriented mindset. The error messages from Java compil-
ers are typically much more useful than error messages from, for example,
the majority of C++ compilers. Similarly, Java performs many more run-
time checks, making debugging less of a burden.

Java is a relatively simple language, having far fewer subtle dark corners
than does C++. And Java is largely platform independent. This allows text-
books, such as this one, to be independent of any platform. It also allows
students to move their code from one system to another. Many colleges

Preface XXxi

now permit students to develop programs on any platform of their choice,
s0 a single class will have some students working on Windows systems,
others on Macintoshes, and others on UNIX or Linux variants.

Java also allows students to create graphical applications much more
easily than in most other languages. Students often find these graphical
programs more appealing than the traditional text-centered example pro-
grams. Of course, it is important that the instructor ensure that the mes-
sage does not become lost in the medium.

PROBLEMS INHERENT IN JAVA

Both students and instructors who have used Java in an earlier course will
have encountered the fact that the language imposes the need to explain
many ideas far earlier than an instructor might desire. Consider this classic
first program:

class HelloWorld {
public static void main (String [] args) {
System.out.println("hello world!");
}
}

Understanding it requires an explanation of static methods, classes and
objects, command line arguments, and system output. Similarly, a few con-
cepts must be mentioned in the early part of this book, although they are
not relevant to the point at hand and are not used until much later. The
three most notable concepts in this category are serialization, synchroniza-
tion, and stream 1/O.

Declaring an object as Serializable simply means that it can be writ-
ten in binary form to a stream: for example, placed into a file. Because
this is a useful property for objects to have, we declare, in Chapter 2, all
our containers as subclasses of Serializable. However, having made this
statement, nothing more is made of this property until Chapter 17, and
there only fleetingly.

Similarly, honesty dictates that when it is important for a method to be
declared synchronized, we do so, even if it occurs in an early chapter—
despite the fact that few students will have ever written a program that
uses multiple threads, and we will not ourselves create such a program
until Chapter 12. But although we don’t expect the student to be able to
write multithreaded applications right from the start, the idea that such a
thing is possible is not difficult to grasp, and hence our discussion of the

xxii PREFACE

problems that the synchronized modifier is intended to solve should be
accessible to all students, regardless of their background.

The Java I/O library is structured differently from similar libraries found
in other languages. Seen in the right light, it is an excellent illustration of
object-oriented design and reuse. However, at least initially, it is simply a
confusingly large collection of seemingly unrelated classes. This has been
made doubly so by the introduction, in Java 1.2, of two parallel libraries:
one based on streams (for processing bytes) and one based on Readers
(for processing characters). We have tried to minimize this confusion by
introducing features slowly and one at a time.

An attraction of Java is that it permits the creation of graphical inter-
faces with far less effort than is required by many other languages. Nev-
ertheless, it takes some time to master the AWT (Abstract Windowing
Toolkit), the Java GUI building library. The author {not to mention the
instructor) is faced with a quandary. Students like creating more graphi-
cal programs, such as games, but time devoted to teaching GUI concepts
comes at the expense of time that could be spent teaching data structures.
The examples presented in this book try to walk a middle ground. Some
examples are graphical, but many are not. Those that are tend to use very
simple graphics, so that the issues relating to data structures do not be-
come lost.

WHY NOT USE THE STANDARD LIBRARY?

When I started contemplating writing a data structures textbook using
Java, my first thought was to base the material on an examination of the
data types found in the Java standard library as distributed by Sun Mi-
crosystems. Doing so would have many advantages. The library would be
found as part of any Java implementation, thereby avoiding the necessity of
distributing code along with the text. Students would be much more likely
to use the standard library after finishing the course than to continue to use
a textbook-specific set of classes, and so on.

However, after carefully examining the Java collection classes, I decided
that to limit myself to these abstractions would simply not do justice to
the material. My reasons for coming to this conclusion were as follows:

The Java library is incomplete. Major abstractions, even whole families
of data types, are not covered by the code found in the standard library.

The Java library is misleading and in some places poorly designed. A
good example is the HashTable data type. In the Java library, this is a
dictionary-like data structure that is indeed one of the classic applications
for this data type, but it prevents any discussion of the equally historical

Preface xxiii

use of the data type as a simple set. Furthermore, the data type is an odd
mishmash of the two classic hash table technigues.

The library has wide interfaces. This is perhaps an understandable de-
cision on the part of the designers of the Java library, as they want to get
the most mileage out of the fewest data structures. But for a student audi-
ence, wide interfaces tend to obscure the important points. In my own data
structures, I have purposely made very narrow interfaces, thus permitting
me to spend the majority of my time addressing the key concepts.

The library confuses interfaces and implementations. Although the Java
library has both interfaces and implementations, they tend to be very close
to each other. Thus, there is a great tendency to program to an implemen-
tation rather than selecting the appropriate interface. It is difficult to say
what, in the Java library, corresponds to an abstract data type. In my own
code, I have used a larger number of smaller interfaces and consistently in
my example programs illustrate the idea of programming to an interface
(an ADT) rather than to an implementation.

The library shows too much evidence of evolution. The code in the
standard library underwent a major revision in the 1.2 version of the lan-
guage yet retained backward compatibility with the earlier library. This
introduced several inconsistencies into the library, such as in naming con-
ventions. By writing my own library, I can use a consistent and, I hope,
easy-to-remember set of conventions.

The library has unsupported operations. A key idea in the Java stan-
dard library is that an implementation may claim to support an interface
and nevertheless decline to respect all the methods specified by the inter-
face. The implementation can do this by throwing an UnsupportedGper-
ationException when asked to perform a method it is unable to honor.
Although occasionally useful, this is a bad idea to hold up to the student
as a paradigm. In the library of abstractions I describe in this book, only
when I discuss open hashing and the remove operation do I not provide a
working implementation for a method declared in the interface.

Nevertheless, I have provided, in Appendix C, a discussion of the data
structures found in the Java standard library and how they relate to the
categories described in this text.

OBTAINING THE CODE

I can be reached by e-mail at budd@cs. orst.edu. My personal Web pages
are found at http://www.cs.orst.edu/~budd/. The library of abstrac-
tions described in this book can be downloaded from ftp://ftp.cs.orst.
edu/pub/budd/ jds.

XXiv PREFACE

Supplementary material for qualified instructors is available. Contact
your Addison-Wesley representative or send e-mail to \verb+aw.cse
8awl. com+ for details.

ACKNOWLEDGMENTS

Many people have seen earlier drafts of this text, and their comments and
suggestions have been most helpful. In particular, I wish to acknowledge
Paul Benjamin {Pace University], Rebecca Djang {Oregon State Univer-
sity), Peter Gabrovsky (California State University), Dean Kelley (Min-
nesota State University, Mankato], Martha Klems (Western Illinois Uni-
versity), Robert Moll {University of Massachusetts, Amherst), Jim Mor-
rison {Mankato State University), Thaddeus F. Pawlicki (University of
Rochester), Carolyn Schauble {Colorado State University), Frank Tompa
(University of Waterloo), Jane Turk (La Salle University), Jack Wileden
{University of Massachusetts), and Salih Yurttas (Texas A&M University).

Of course, a great deal of rewriting occurred after I received all of these
comments, so any remaining errors are solely my responsibility.

My editor from Addison-Wesley has once again been Susan Hartman,
now Susan Hartman Sullivan. Despite some important changes going on
in her life, she somehow still found time to discuss Data Structures with
me and with the reviewers. I wish her and her new husband, Pat, all the
best. Her able assistant has been Lisa Kalner, with whom I have also had
the pleasure to work with on previous projects. As always, I have found
Susan and Lisa, and all the rest of the Addison-Wesley team, to be profes-
sional and a pleasure to work with. As with several of my recent books,
composition and layout has been produced by Paul Anagnostopoulos of
Windfall Software. I am continually amazed at how Paul and his team
make a job that I know is so complex look so easy.

CONTENTS

PREFACE XV

1 THE MANAGEMENT OF COMPLEXITY 1

1.1
1.2
1.3

1.4
L5
1.6
1.7
1.8

The Control of Complexity 2

Abstraction, Information Hiding, and Layering 3
Division into Parts 6

1.3.1 Encapsulation and Interchangeability 6
1.3.2 Interface and Implementation 7

1.3.3 The Service View 8

1.34 Repetition and Recursion 9

Composition 11

Layers of Specialization 14
Multiple Views 16
Patterns 16

Chapter Summary 18
Further Information 19
Study Questions 20
Exercises 21
Programming Projects 21

2 ABSTRACT DATA TYPES 23

2.1

22
23

What Is a Type? 24

2.1.1 Classes 25

2.12 Interfaces and Polymorphism 27
Abstract Data Types 30

The Fundamental ADTs 34

23.1 Collection 34

vi

CONTENTS

232
233
234
235
2.3.6
237
238
239

Bag 36

Set 37

Sorted, Comparator, and Comparable 38
Stack, Queue, and Deque 39

FindMin and FindNth 41

Indexed Collections and Sorting Algorithms 42
Map 43

Matrix 44

24 Chapter Summary 45
Further Information 46
Study Questions 46
Exercises 46
Programming Projects 47

ALGORITHMS 49

3.1 Characteristics of Algorithms 50
3.2 Recipes as Algorithms 52

3.3 Analyzing Computer Algorithms 53

3.3.1
332
333
334
335

Specification of the Input 54
Description of the Result 56
Instruction Precision 57
Time to Execute 57

Space Utilization 60

3.4 Recursive Algorithms 60

3.5 Chapter Summary 64
Further Information 64
Study Questions 65
Exercises 65

Programming Projects 66

EXECUTION-TIME MEASUREMENT 69
4.1 Algorithmic Analysis and Big-Oh Notation 70
4.2 Execution Time of Programming Constructs 71

4.2.1
422
423
4.24
425

Constant Time 71
Simple Loops 72
Nested Loops 75
While Loops 77
Function Calls 79

Contents vii

43 Summing Algorithmic Execution Times 80
4.4 The Importance of Fast Algorithms 84
4.5 Benchmarking Execution Times 86
4.6 Chapter Summary 90
Further Information 91
Study Questions 91
Exercises 91
Programming Projects 94

INCREASING CONFIDENCE IN CORRECTNESS 97

5.1 Program Proofs 97
5.1.1 Invariants 98
5.1.2 Analyzing Loops 100
5.1.3 Asserting That the Outcome Is Correct 103
5.1.4 Progress toward an Objective 104
5.1.5 Manipulating Unnamed Quantities 105
5.1.6 Function Calls 106
5.1.7 Recursive Algorithms 107

52 Program Testing 109

5.3 Chapter Summary 111
Further Information 111
Study Questions 111
Exercises 112
Programming Projects 114

VECTORS 117
6.1 The Vector Data Structure 117
6.2 Enumeration 127
6.3 Application-Silly Sentences 128
6.4 Application-Memory Game 131
6.5 Application-Shell Sort 136
6.6 A Visual Vector 140
6.7 Chapter Summary 144

Further Information 144

Study Questions 144

Exercises 145

Programming Projects 149

viii CONTENTS

7 SORTING VECTORS 153
7.1 Divide and Conquer 153
7.1.1 Binary Search 155
7.2 Sorted Vectors 158
7.3 Merge Sort 161
7.4 Partitioning 165
7.4.1 The Pivot Algorithm 166

7.4.2 Finding the nth Element 168
743 Quick Sort 171

7.5 Chapter Summary 175
Further Information 175
Study Questions 176
Exercises 176
Programming Projects 179

8 LINKED Lists 181

8.1 Varieties of Linked Lists 185
8.2 LISP-Style Lists 187
8.3 The LinkedList Abstraction 189
8.4 Application-Asteroids Game 197
8.5 Application-Infinite-Precision Integers 207
8.6 Chapter Summary 211

Further Information 212

Study Questions 212

Exercises 212

Programming Projects 214

9 LIST VARIATIONS 217
9.1 Sorted Lists 217
9.1.1 Fast Merge 219
9.1.2 Execution Timings for Merge Operations 220
9.2 Self-Organizing Lists 221
9.3 Skip Lists 223
9.4 Chapter Summary 232
Further Information 232
Study Questions 233

