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Preface to the
Fourth Edition

During the thirty-five years since the first edition of this book was written,
courses in “modern algebra” have become a standard part of college
curricula all over the world, and many books have been written for use in
such courses. Nevertheless, it seems desirable to recall our basic
philosophy, which remains that of the present book.

“We have tried throughout to express the conceptual background of
the various definitions used. We have done this by illustrating each new
term by as many familiar examples as possible. This seems especially
important in an elementary text because it serves to emphasize the fact
that the abstract concepts all arise from the analysis of concrete situa-
tions.

“To develop the student’s power to think for himself in terms of the
new concepts, we have included a wide variety of exercises on each topic.
Some of these exercises are computational, some explore further exam-
ples of the new concepts, and others give additional theoretical develop-
ments. Exercises of the latter type serve the important function of
familiarizing the student with the construction of a formal proof. The
selection of exercises is sufficient to allow an instructor to adapt the text
to students of quite varied degrees of maturity, of undergraduate or first
year graduate level.

“Modern algebra also enables one to reinterpret the results of classical
algebra, giving them far greater unity and generality. Therefore, instead
of omitting these results, we have attempted to incorporate them sys-
tematically within the framework of the ideas of modern algebra.

“We have also tried not to lose sight of the fact that, for many
students, the value of algebra lies in its applications to other fields: higher
analysis, geometry, physics, and philosophy. This has influenced us in our
emphasis on the real and complex fields, on groups of transformations as
contrasted with abstract groups, on symmetric matrices and reduction to
diagonal form, on the classification of quadratic forms under the
orthogonal and Euclidean groups, and finally, in the inclusion of Boolean
algebra, lattice theory, and transfinite numbers, all of which are important
in mathematical logic and in the modern theory of real functions.”
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Preface

In detail, our Chapters 1-3 give an introduction to the theory of linear
and polynomial equations in commutative rings. The familiar domain of
integers and the rational field are emphasized, together with the rings of
integers modulo n and associated polynomial rings. Chapters 4 and 5
develop the basic algebraic properties of the real and complex fields
which are of such paramount importance for geometry and physics.

Chapter 6 introduces noncommutative algebra through its simplest and
most fundamental concept: that of a group. The group concept is applied
systematically in Chapters 7-10, on vector spaces and matrices. Here care
is taken to keep in the foreground the fundamental role played by algebra
in Euclidean, affine, and projective geometry. Dual spaces and tensor
products are also discussed, but generalizations to modules over rings are
not considered.

Chapter 11 includes a completely revised introduction to Boolean
algebra and lattice theory. This is followed in Chapter 12 by a brief
discussion of transfinite numbers. Finally, the last three chapters provide
an introduction to general commutative algebra and arithmetic: ideals
and quotient-rings, extensions of fields, algebraic numbers and their
factorization, and Galois theory.

Many of the chapters are independent of one another; for example,
the chapter on group theory may be introduced just after Chapter 1,
while the material on ideals and fields (§§13.1 and 14.1) may be studied
immediately after the chapter on vector spaces.

This independence is intended to make the book useful not only for a
full-year course, assuming only high-school algebra, but also for various
shorter courses. For example, a semester or quarter course covering
linear algebra may be based on Chapters 6-10, the real and complex
fields being emphasized. A semester course on abstract algebra could deal
with Chapters 1-3, 6-8, 11, 13, and 14. Still other arrangements are
possible.

We hope that our book will continue to serve not only as a text but
also as a convenient reference for those wishing to apply the basic
concepts of modern algebra to other branches of mathematics, including
statistics and computing, and also to physics, chemistry, and engineering.

It is a pleasure to acknowledge our indebtedness to Clifford Bell, A.
A. Bennett, E. Artin, F. A. Ficken, J. S. Frame, Nathan Jacobson, Walter
Leighton, Gaylord Merriman, D. D. Miller, Ivan Niven, and many other
friends and colleagues who assisted with helpful suggestions and improve-
ments, and to Mrs. Saunders Mac Lane, who helped with the secretarial
work in the first three editions.

Cambridge, Mass. GARRETT BIRKHOFF
Chicago, Illinois SAUNDERS MAC LANE
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The Integers

1.1. Commutative Rings; Integral Domains

Modern algebra has exposed for the first time the full variety and
richness of possible mathematical systems. We shall construct and
examine many such systems, but the most fundamental of them all is the
oldest mathematical system—that consisting of all the positive integers
(whole numbers). A related but somewhat larger system is the collection
Z of all integers 0, £1, £2, £3,-- .. We begin our discussion with this
system because it more closely resembles the other systems which arise in
modern algebra.

The integers have many interesting algebraic properties. In this chap-
ter, we will assume some especially obvious such properties as postulates,
and deduce from them many other properties as logical consequences.

We first assume eight postulates for addition and multiplication. These
postulates hold not only for the integers, but for many other systems of
numbers, such as that of all rational numbers (fractions), all real numbers
(unlimited decimals), and all complex numbers. They are also satisfied by
polynomials, and by continuous real functions on any given interval.
When these eight postulates hold for a system R, we shall say that R is a
commutative ring.

Definition. Let R be a set of elements a, b, c, - - - for which the sum
a + b and the product ab of any two elements a and b (distinct or not) of R
are defined. Then R is called a commutative ring if the following postulates
(i)—(viii) hold:
(i) Closure. If a and b are in R, then the sum a + b and the product
ab are in R.




2

Ch1 The Integers

(ii) Uniqueness. Ifa = a’ and b = b’ in R, then
a+b=a+b and ab=a'b
(iii) Commutative laws. For all a and b in R,
a+b=>b+a, ab = ba.
(iv) Associative laws. For all a,b, and c in R,
a+ (b +c)=(a+b)+c, a(bc) = (ab)c.
(v) Distributive law. For all a, b, and ¢ in R,
a(b + ¢c) = ab + ac.
(vi) Zero. R contains an element 0 such that
a+0=a forallainR.
(vii) Unity. R contains an element 1 # 0 such that
al =va forallain R.

(viii) Additive inverse. For each a in R, the equation a + x = O has a
solution x in R.

It is a familiar fact that the set Z of all integers satisfies these
postulates. For example, the commutative and associative laws are so
familiar that they are ordinarily used without explicit mention: thus
a + b + ¢ customarily denotes the equal numbers a.+ (b + ¢) and
{a + b) + ¢. The property of zero stated in (vi) is the characteristic
property of the number zero; and similarly, the property of 1 stated in
(vii) is the characteristic property of the number one. Since these laws are
formally analogous, we may say that O and 1 are the “identity elements”
for addition and multiplication, respectively. The assumption 1 # 0 in
(vii) is included to eliminate trivial cases (otherwise the set consisting of
the integer O alone would be a commutative ring).

The system Z of all integers has another property which cannot be
deduced from the preceding postulates. Namely, if ¢ # 0 and ca = ¢b in
Z, then necessarily a = b (partial converse of (ii)). This property is not
satisfied by real functions on a given interval, for. example, though these
form a commutative ring. The integers therefore constitute not only a




1.2 Elementary Properties of Commutative Rings

commutative ring but also an integral domain in the sense of the follow-
ing definition.

Definition. An integral domain is a commutative ring in which the
following additional postulate holds:

(ix) Cancellation law. If ¢ # 0 and ca = cb, then a = b.

The domain Z{¥2). An integral domain of interest for number
theory consists of all numbers of the form a_+ b\/i, where a and b are
ordinary integers (in Z). In Z[V2), a + bv2 = ¢ + dV2 if and only if
a = ¢, b = d. Addition and multiplication are defined by

(@+bV2) +(c+dV2)=(a+c)+ (b +dNV2
(@ + bV2)(c + dv2) = (ac + 2bd) + (ad + bc)V2.

Uniqueness and commutativity are easily verified for these operations,
while 0 + 0vV2 acts asa zeroand 1 + Ov2 as a unity. The additive inverse
of a +bV2 is (—a) + (—b)\/i. The verification of the associative and
distributive laws is a little more tedious, while that of the cancellation law
will be deferred to the end of §1.2.

1.2. Elementary Properties of Commutative Rings

In elementary algebra one often takes the preceding postulates and
their elementary consequences for granted. This seldom leads to serious
errors, provided algebraic manipulations are checked against specific
examples. However, much more care must be taken when one wishes
to reach reliable conclusions about whole families of algebraic systems
(e.g., valid for all integral domains generally). One must be sure that
all proofs use only postulates listed explicitly and standard rules of
logic.

Among the most fundamental rules of logic are the three basic laws
for equality:

Reflexive law: a = a.
Symmetric law: lfa = b, thenb = a.
Transitive law: Ifa = band b = ¢, thena = c, valid for all g, b, and c.

We now illustrate the idea of a formal proof for several rules valid in
any commutative ring R.
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RuLEl. (a + b)c = ac + bc,foralla, b,cinR.

This rule may be called the right distributive law, in contrast to
postulate (v), which is the left distributive law.
Proof. For all a, b, and ¢ in R:

1. (a + b)c = c(a + b) (commutative law of mult.).
2. cla+b) =ca +cb (distributive law).

3.(@a+ b)c =ca+ch (1, 2, transitive law).

4. ca = ac, cb = bc (commutative law of mult.).
5. ca +chb = ac + bc (4, uniqueness of addn.).

6. (a + b)c = ac + bc (3, 5, transitive law).

RuLE 2. ForallainR, 0+a =aandl:-a = a.

Proof. Forall ain R:

1.0+a=a+0 (commutative law of addn.).
2.a+0=a (zero).
3.0+a=a (1, 2, transitive law).

The proof for 1-a = a is similar.

RuLE 3. If z in R has the property that a + z = a for all @ in R,
then z = 0. .

This rule states that R contains only one element 0 which can act as
the identity element for addition.
Proof. Since a + z = a holds for all g, it holds if a is 0.

1.0+2z=0

2. 0=0+2 (1, symmetric law).
3.0+z =2 (Rule 2 when a is z).
4. 0==z (2, 3, transitive law).

In subsequent proofs such as this one, we shall condense the repeated
use of the symmetric and transitive laws for equality.

RuLE 4. For all aq, b, c in R:
atb=a+c implies b=c

This rule is called the cancellation law for addition.
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Proof. By postulate (viii) there is for the element a an element x
with a + x = 0. Then

l.x+a=a+x=0 (comm. law addn., trans. law).
2Z.x=x,a+b=a+c (reflexive law, hypothesis).
3.x+(a+b)=x+(a+c) (2, uniqueness of addn.).

4. b=0+b=(x+a)+b '

x+la+by=x+(a+c)
x+a)¥+c=0+c=c

(Supply the reason for each step of 4!)

RuLE 5. For each a, R contains one and only one solution x of the
equation a + x = 0.

This solution is denoted by x = —a, as usual. The rule may then be
quoted as a + (—a) = 0. As customary, the symbol a — b denotes a +
(=b).

Proof. By postulate (viii), there is a solution x. If y is a second
solution, then a + x = 0 = @ + y by the transitive and symmetric laws.
Hence by Rule 4, x = y. Q.E.D.

RuULE 6. For given a and b in R, there is one and only one x in R
witha + x = b.

This rule asserts that subtraction is possible and unique.
Proof. Take x = (—a) + b. Then (give reasons!)

at+x=a+((—a)+b)=(@+(-a) +b=0+b=0>

If y is a second solution, then a + x = b = a + y by the transitive law;
hence x = y by Rule 4. Q.E.D.

RurLe?7. ForallainR,a-0=0=0"a.

Proof.
l.L.a=a a+0=a (reflexive law, postulate (vi)).
2. ala +0) = aa (1, uniqueness of muit.).
3.aa+a-0=a(a+0)=aa (distributive law, etc.).
=aqa+0
4.a-0=0 (3, Rule 4).
5.0-a=a-0=0 (comm. law mult., 4)
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~ RuULE 8. If u in R has the property that au = a for all a in R, then
u=1.

This rule asserts the uniqueness of the identity element 1 for multipli-
cation. The proof, which resembles that of Rule 3, is left as an exercise.

RuLE 9. For all a and b in R, (—a)(—b) = ab.

A special case of this rule is the “‘mysterious” law (—1)(—1) = 1.
Proof. Consider the triple sum (associative law!)

1. [ab + a(-b)] + (—a)(—b) = ab + [a(-b) + (—a)(—b)].
By the distributive law, the definition of —a, Rule 7, and (vi),

2. ab + [a(—b) + (—a)(—b)] = ab + [a + (—a)](—b)
= ab + 0(-b) = ab.

For similar reasons,

3. [ab + a(=b)] + (—a)(—b)

alb + (=b)] + (-a)(-b)
= a -0+ (—a)(-b) = (-a)(-b).

The result then follows from 1, 2, and 3 by the transitive and symmetric
laws for equality. Q.E.D. )

Various other simple and familiar rules are consequences of our
postulates; some are stated in the exercises below.

Another basic algebraic law is the one used in the solution of
quadratic equations, when it is argued that (x + 2)}(x — 3) = 0 means
either that x + 2 = 0 or that x — 3 = 0. The general law involved is the
assertion

1) if ab=0, thencither a =0 or b =0,

This assertion is not true in all commutative rings. But the proof is
immediate in any integral domain D, by the cancellation law. For suppose
that the first factor a is not zero. Then ab = 0 = a -0, and a may be
cancelled; whence b = 0. Conversely, the cancellation law follows from
this assertion (1) in any commutative ring R, for if a # 0, ab = ac means
that ab — ac = a(b — ¢) = 0, which by (1) makes & — ¢ = 0. We there-
fore have

Theorem 1. The cancellation law of multiplication is equivalent in a
commutative ring to the assertion that a product of nonzero factors is not
zero.
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Nonzero elements a and b with a product ab = 0 are sometimes
called “divisors of zero,” so that the cancellation law in a commutative
ring R is equivalent to the assumption that R contains no divisors of zero.

Theorem 1 can be used to prove the cancellation law for the domain
Z[s/i] defined at the end of §1.1, as follows. Suppose that Z[w/i] included
divisors of zero, with

(@ + bV2)(c + dV2) = (ac + 2bd) + (ad + bc)V2 = 0.

By definition, this gives ac + 2bd = 0, ad + bc = 0. Multiply the first by
d, the second by ¢, and subtract; this gives »(2d> — c?) = 0, whence
either b = 0 or ¢® = 2d*. If b = 0, then the two preceding equations
give ac = ad = 0, so either a = 0 or ¢ = d = 0 by Theorem 1. But the
first alternative, a = 0, would imply that a + b\/§ = 0 (since b = 0); the
second that ¢ + dv2 = 0—in neither case do we have divisors of zero.

There remains the possibility ¢ = 2d?; this would imply V2 = c/d
rational, whose impossibility will be proved in Theorem 10, §3.7.

If one admits that V2 is a real number, and that the set of all real
numbers forms an integral domain R, then one can very easily prove that
Z[V2] is an integral domain, by appealing to the following concept of a
subdomain.

Definition. A subdomain of an integral domain D is a subset of D
which is also an integral domain, for the same operations of addition and
multiplication.

It is obvious that such a subset S is a subdomain if and only if it
contains 0 and 1, with any element a its additive inverse, and with any
two elements a and b their sum @ + b and product ab.

Exercises

In each of Exercises 1-5 give complete proofs, supporting each step by a
postulate, a previous step, one of the rules established in the text, or an already
established exercise.

1. Prove that the following rules hold in any integral domain:
(a) (a + b)(c + d) = (ac + bc) + (ad + bd),
a+b+c+dl=@+by+(c+d)y=[(a+b)+c]+d,
c)a+b+c)=(c+a)+b,
(d) a(bc) = c(ab),
{e) a(b + (c + d)) = (ab + ac) + ad,
() a(b + ¢)d = (ab)d + a(cd).
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10.

. (a) Prove Rule 8. (b) Provel-1 =1,

(c) Prove that the only “idempotents” (i.e., elements x satisfying xx = x) in’
an integral domain are 0 and 1.

. Prove that the following rules hold for —a in any integral domain:

(@) —(—a) = a, (b) -0=0,

(¢} —(a + b) = (—a) + (-b), (d) —a = (—1)aq,

(e) (—a)b = a(—b) = —(ab).

Prove Rule 9 from Ex. 3(d) and the special case (—1)(—1) = 1.

. Prove that the following rules hold for the operation a — b = a + (—b) in

any integral domain:

@ @-by+(c—d)y=(a+c)—(b+4d),

b @a—-b)—(c—d)y=(a+d)—(b+c),

(©) (@ — b)c — d) = (ac + bd) — (ad + bc),
(d a—-—b=c—difandonlyifa +d =b + ¢,
(e) (@ — b)c = ac — bc.

. Are the following sets of real numbers integral domains? Why?

(a) all even integers, (b) all odd integers, () all positive integers,
(d) all real numbers a + »5'%, where a and b are integers,

(e) all real numbers a + »9'/*, where a and b are integers,

(f) all rational numbers whose denominators are 1 or a power of 2.

. (a) Show that the system consisting of 0 and 1 alone, with addition and

multiplication defined as usual, except that 1 + 1 = 0 (instead of 2) is an
integral domain.

(b) Show that the system which consists of 0 alone, with 0 + 0 =0-0 = 0,
satisfies all postulates for an integral domain except for the requirement
0 # 1 in (vii).

(a) Show that if an algebraic system S satisfies all the postulates for an
integral domain except possibly for the requirement 0 # 1 in (vii), then §
is either an integral domain or the system consisting of 0 alone, as
described in Ex. 7(b).

(b) Is 0 # 1 used in proving Rules 1-9?

Suppose that the sum of any two integers is defined as usual, but that the

product of any two integers is defined to be zero. With this interpretation,

which ones among the postulates for an integral domain are still satisfied?

Find two functions f # 0 and g # O such that fg = 0.

1.3. Properties of Ordered Domains

Because the ring Z of all ordinary integers plays a unique role in

mathematics, one should be aware of its special properties, of which the
commutative and cancellation laws of multiplication are only two. Many
other properties stem from the possibility of listing the integers in the
usual order

---—4,-3,-2,-1,0,1,2,3,4,---.




