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Chapter 1

Introduction

1.1 Models of Disordered Matter: A Brief Overview

Although this text deals with the physics of condensed matter, its contents
differs strongly from the one of most standard textbooks on this subject in
that it focuses on materials such as window glass, plastics, rubber, amor-
phous metals, porous materials, magnets with frozen-in disorder, etc., i.e.
on systems that are referred to as “amorphous materials” or “ill-condensed
matter”. Despite the fact that these materials have been used by man since
ancient times, presumably the first glass was produced in ancient Egypt sev-
eral thousand years ago, and are nowadays ubiquitous in daily life, most
textbooks on the theory of condensed matter ignore this type of matter al-
most completely. The reason for this negligence is the lack of a coherent and
elegant theoretical description for these systems, which in the case of crys-
tals can be obtained by exploiting the periodicity of the crystal structure.
Therefore, analytical theories for the properties of such strongly disordered
matter are comparably scarce, and much of the theoretical knowledge that
we have so far stems from computer simulations. Despite this lack of a well
founded theoretical description, the physics and chemistry of glasses has
become a prominent topic of research in the last decades: The structure of
the glassy state has become a subject of intense experimental investigation
and numerical simulations, and in particular the “problem of the glass tran-
sition”, i.e. the phenomenon that many liquids can be cooled below their
melting temperature and solidify into an amorphous solid, is considered as
one of the grand challenges in condensed matter physics, and hence studied
intensively.

In this situation, the present book tries to fill a gap in the present lit-
erature by presenting an introduction to the subject under the point of
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Fig. 1.1 (a) The honeycomb lattice and (b) the decorated honeycomb lattice. The
topological structure of the honeycomb is the same as that of a layer of carbon atoms in
graphite or of a layer of crystalline arsenic. The topology of the decorated honeycomb
occurs in the structure of layers that make up crystalline As2S3 and AszSe3. The sulfur
(or selenium) atoms are represented by open circles. After Zallen (1983).

view of statistical thermodynamics. We feel that statistical thermodynam-
ics statistical thermodynamics is a particularly useful framework for the
description of amorphous solids and the understanding of their properties
as we will outline in this Introduction. More details on the various topics
can be found in the subsequent chapters.

As we will see later, the nature of the structural disorder depends
strongly on the type of disordered solids one considers, and obtaining a
proper characterization of these structures is one of the main topics of this
book. (More detailed discussions on structural disorder can be found in
the texts of Cusack (1986) and Elliott (1983).) A second main topic is
to understand the implications of this “frozen-in disorder” for the various
physical properties. In addition to this frozen-in disorder, we have of course
also the normal thermal disorder, which is one of the standard problems
considered by statistical thermodynamics, but which wins new facets here
in its interplay with the quenched disorder.

These general remarks can be illustrated with a specific example, the
“Continuous Random Network” (CRN) model of covalent glasses, which
dates back to Zachariasen (1932), cf. Figs. 1.1 and 1.2. In such an amor-
phous solid, one encounters disorder in the “equilibrium” positions of the
atoms even if the local chemical order is the same as the one in the corre-
sponding crystalline structure.

We put the word “equilibrium” in quotation marks, since we assume
that the real equilibrium structure is the ordered crystal of Fig. 1.1, which
has a lower free energy. However, often the rates for the nucleation and
growth of crystal from the amorphous structure are so low, that for most
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Fig. 1.2 Two-dimensional continuous random networks. A sketch of a (hypothetical)
threefold-coordinated elemental glass is presented in (a), while Zachariasen's (1932) di-
agram for an A2Bj3 glass is shown in (b). After Zallen (1983).

practical purposes the latter is metastable phase that is essentially indis-
tinguishable from the thermal equilibrium.

The difference in the geometrical structure between the crystal (Fig. 1.1)
and the glass (Fig. 1.2) has immediate consequences for the spectrum of
elementary excitations of the respective solids, and the resulting thermo-
dynamic properties at low temperatures. In the crystal as well as in the
amorphous solid we find small-amplitude vibrations of the atoms around
their equilibrium positions, which can be treated as harmonic oscillations at
low temperatures, at least as a first approximation. Now the lattice period-
icity of the crystal has an important physical consequence: the vibrations
can be decomposed into non-interacting plane waves with a wave-vector k
and a frequency w(k), i.e. k is a “good quantum number”. As one can read
in more detail in any standard text book on theoretical solid state physics,
one finds a homogeneous density of eigenstates k in the first Brillouin zone
of the crystal, and this has an important consequence on the phonon den-
sity of states ((w) at small k£ = |E|. Recalling the dispersion relation for
acoustic phonons, w = ck, where ¢ is the velocity of sound (for simplicity we
ignore the distinction between longitudinal and transverse phonons here),
one concludes immediately

{(w)dw = %%ddk 7= const - k4 ldk ox w?ildw (1.1)

where d is the dimension of the crystal. This yields as a contribution
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Fig. 1.3 Specific heat Cy of vitreous silica (SiO2), amorphous selenium (Se) and poly-
methylmetacrylate (PMMA), also known as “plexiglass”) as a function of temperature.
In the case of amorphous silica, the Debye contribution due to sound waves Eqs. (1.1)-
(1.3) is included as a broken straight line on this log-log plot. The variation of Cy at
low temperature roughly follows a relation Cy o T1*+" with 0 < n < 0.3 in the various
amorphous materials. After Stephens (1976).

of the internal energy due to phonons (A = Planck’s constant and kp =
Boltzmann’s constant)

Uphonons = / hw((w)[exp(hw/kpT) — 1)~ dw
o0
5= const - T4+ _/xd[e’ - 1] ldz, (1.2)
0
where in the last step we have substituted hw/kgT = z in the integral.

From Eq. (1.2) we immediately recognize the famous Debye T3 law for the
specific heat at low T (in d = 3 dimensions), since

Cy = (0U/8T)y «T? . ' (1.3)

(Here we have made the approximation that the internal energy U is given
by Uphonons, an approximation which is reasonable if the contributions from
conduction electrons or magnons can be neglected.)
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Fig. 1.4 Double-well potential with an asymmetry A, a potential barrier of height V,
and width §.

These considerations are no longer valid in amorphous materials: Since
there is no crystal lattice, there is no Brillouin zone, and k is no longer a
good quantum number. While acoustic waves with the dispersion relation
w = ck still exist for k — 0, these waves are not dominant in the density
of states for small w. Instead the temperature dependence of the specific
heat at low T, see Fig. 1.3, seems to hint for the presence of more or
less localized excitations that contribute to the density of states at low
w. In this context the model of the so-called “two-level systems” (TLS)
has gained wide popularity to describe this excess. Within this model
one postulates the existence of particular degrees of freedom (x) which
experience a potential U(x) with the shape of an asymmetric double well
and which undergo a tunneling motion between the two wells, see Fig. 1.4.
As we will see later, the TLS model (Anderson et al. '1972; Phillips 1972,
1981; von Lohneysen 1981; Kovalenko et al. 2001) is quite successful and
widely used to account for many low temperature properties of various
kinds of amorphous materials. E.g., if one assumes that the density of
such TLS is independent of the gap A for A — 0, one can rationalize a
linear variation of Cy with T. However, although the concept of two level
systems in glasses is already more than 30 years old, it is still controversial
what the physical meaning of the variable z in Fig. 1.4 really is. Figure 1.5
gives speculative examples of structures in which two-level systems could
be present (Hunklinger and Arnold 1976). However, & microscopic theory
that describes the precise physical nature of these two-level systems is still
lacking. We will return to a more detailed discussion of these problems in
Chap. 4 of this book.

While so far we have mostly considered solids with a disordered struc-
ture resembling the one of a liquid, as they are typically formed by super-



