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PREFACE

This book presents a series of papers dealing mainly with the applications
of the boundary element method rather than its more theoretical aspects.
The contributions are all written by scientists and engineers working on the
latest developments of the technique and its applications to solve engineer-
ing problems.

The volume presents the state of the art in boundary elements in fields such
as fluid flow, electromagnetics and electrical engineering, hydrodynamics,
heat conduction, different potential type problems, stress analysis, fracture
mechanics and some of the latest developments in numerical and mathe-
matical techniques which are essential to write efficient boundary element
systems.

The book is the edited version of the Proceedings of the 6th International
Boundary Element Technology Conference held at Southampton in June
1991 and organized by the Wessex Institute of Technology.

The Boundary Element Technology series of conferences (BETECH) is now
well established as the pre-eminent forum for the presentation of applica-
tion oriented work in Boundary Elements and associated computational
techniques. From its inception in 1985 in Australia the BETECH confer-
ences have documented the increasing application of the Method and the
Proceedings have become a standard reference for the engineering commu-
nity. The BETECH conferences have always had an international emphasis
with venues in Adelaide, Australia 1985, M.I.T., USA 1986, Rio de Janeiro,
Brazil 1987, Windsor, Canada 1989, Delaware, USA 1990, and Southamp-
ton, UK 1991.

The editor is grateful for the support received by the members of the Scien-
tific Advisory Committee, i.e. C. Alessandri (University of Florence, Italy),
M.H. Aliabadi (WIT, UK), A. Cheng (University of Delaware, USA), J.J.
Connor (M.LT., USA), S. Grilli (University of Rhode Island, USA), T.
Honma (Hokkaido University, Japan), M. Ingber (University of New Mexico,
USA), C. Kuhn (University of Erlangen-Nurnberg, Germany), A. Miranda
(CETIM, France), R. Rangogni (ENEL, Italy), R.N.L. Smith (Royal Mil-
itary College of Science, UK), G.T. Symm (National Physical Laboratory,
UK), M. Tanaka (Shinshu University, Japan), J.L. Wearing (University of
Sheffield, UK), L.C. Wrobel (WIT, UK), and N.G. Zamani (University of
Windsor, Canada).

Carlos A Brebbia
Southampton, June 1991
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Numerical Investigation of Fluid Flow with
Natural Convection due to Non-linear
Material Behavior and Double-Diffusion
Effects

I. Zagar, P. Skerget, A. Alujevic

Faculty of Engineering, University of Maribor,
Slovenia

ABSTRACT

The paper reports numerical simulation results of natural convection when the
flow is driven by density variations due to combined heat and mass transfer. The
Boussinesq approximation is used to take into account the temperature and con-
centration dependent density. Non-steady state solutions are performed for vari-
ous combinations of boundary conditions and for different values of the thermal
and mass transfer Grasshoff numbers. The influence of the fluid density inversion
on the flow structure is also studied. Boundary-domain integral method has been
applied.

INTRODUCTION

The transport phenomenon of natural convection in general fluid flow is included
into governing equations through the Boussinesq approximation. In this paper
two different problems of natural convection in fluids are studied.

In the first problem, natural convection motion due to simultaneous existence
of temperature and concentration gradients in fluids is considered. A practi-
cal example of such complex phenomenon is a storage tank of liquified natural
gas. Fluid properties of liquified natural gas (Pr = 2.2; Se¢ = 130; Gr, =
2500; Gr,, = —1000) are taken into account in the numerical example of a closed
cavity subject to different kinds of boundary condition.

In the second problem, the nonlinear Boussinesq approximation was considered.
Neglecting the nonlinear term in the Boussinesq approximation for the same fluids
may lead to a completely wrong picture of the real situation. Example of such fiuid
is water in the range of 0°C to 8°C. Density of water is increasing to 4°C' and
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then decreasing. Effect of such anomaly of water density is evident from the
development of the temperature and velocity field.

The boundary-domain integral method is used for the numerical simulation of the
time-dependent set of governing equations in velocity-vorticity formulations. The
numerical results agree with those obtained from experiments [1] and calculations
of other authors[2],[5].

GOVERNING EQUATIONS

The partial differential equations set, governing the motion of viscous incom-
pressible fluid is known as nonlinear Navier-Stokes equations expressing the ba-
sic conservation balances of mass, momentum, energy and mass concentration.
Introducing vorticity w and stream function 4 of the solenoidal velocity field, the
computation of the flow is divided into kinematics given by the Poisson’s elliptic
equation, written in plane z —y by

0%y 8%
and into the kinetics described by the vorticity equation
6_‘”+v ?—u—)-i—v 6_‘”_V(62‘”+62_‘”)+ oF oF @)
ot "m0z Ty TV o2 T a2/ T g T I gy

The buoyancy effect is included by energy and molar fraction equations

or aT orT T 8T

5?+v’6~z+v”?9;:a(79}7+8_y?) (3)
ac oc oc 9:Cc  8*C
W+UIE+U”5?_D(5}7+8—3F) (4)
and Boussinesq approximation, given for linear normalised difference of density
b be=F= f(T-T)-Bn(C-C) (5)

For water in the region of anomaly from 0° C to 8° C the normalized difference
of density is given [5]

P Po
Po

BOUDARY-DOMAIN INTEGRAL EQUATIONS

= F = (0.066576 T — 0.008322 T?)/p, (6)

The boundary domain integral statement for the flow kinematics can be derived
from the vector elliptic equation for vector potential 9; [3] applying Green’s the-
orem for the vector functions and the elliptic fundamental solution u*, resulting
in the following statement
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Describing the laminar transport of the vorticity, temperature and molar fraction
in the integral statement, one has to take into account that the vorticity, temper-
ature and mass concentration obey a nonhomogeneous parabolic equation(3],(6).
So the following boundary-domain integral formulations can be derived for the

plane
c(§)w(é,tr) +V'/'/F 1

¢
_//F (wvy, + g¢ F)u* dtdT’
F'dep,

——-u dt dT’
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NUMERICAL RESULTS

Water anomaly in a closed cavity

y
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Fig. 1: Problem geometry and boundary conditions

Geometry and boundary condition for buoyancy driven laminar flow in a closed
square cavity, filled by water exhibiting an anomaly of density is shown on Fig.1.
A mesh of 40 elements (80 nodes) and 100 internal cells has been used.A model
was taken as in [4] where linear Boussinesq approximation for air has been used.
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Fig. 2: Steady state results Ra = 10°




Boundary Element Technology 7

G — e e e e e e e s

AN WL W U T
\
!
!
/
v
—~ IS e s e e
el N )

P T N R
A T T N N O T U N
P N N N A T A}
P N Y T T T T |

/1IIIV\\\\\
////1111“‘QQ‘\

.

P e e T T T Y

/
/
/

i

7

potm . o e e

17

NN N N s e e
SN N N N s s s
7\\\\\\\.

l

.
!_//lrr,.
\_//4—_.__.

B Rt R S

N

D etk R T T T B R} ' v e N Y
..\\\\\\\\IIII””“". .\\\\\\llll/////,_.
. P ' ———— [N
NN R _\\\\\\\\\-,,””H/,__“
P T T T T T I LI AN S A B T
PR S T T R ____‘\.. R
N A _____._.. P T T O A Y
R R R Prbyia IR B A
______._\-\:,/,4__ "__—,,”“,:|\x\\\\‘_
N R N st 7
[ R A A A A ot bt PAANANATTE Sl
. - — — — '
_\‘\\\\\\\~._\\\\\. _.HH“““H”I\:\{\\\\\\.
.\\\\\\\\_.\\\\\\\~ P U,
el S 'y
NN ERE e e =~ o\ A
_\\s__,/ll\\\“\\u, [ I R e
P AN S~ L Y W NN . C
VN N et S L N N e e e e e DU
PO U T T T T e o e e o,
R R R R I TR S N S 4 v e aa——————— N NVt
- B I IR I AN NN
AP R U S O N [ N W Y T
R
vt s s, PspEEEE S R A -~
SN N R R NN
ﬁ.\\\\\\\\\\!/////— _____-“” PURC T N B N A
_.N\\\\\\\\\I//// ! ”___—””.. ST I B B I
..\\\\\\\\\\\IN”/ ."“"”__.. [ A A
- 4
__n\\\\\\\\\\\/// VL \\\\wwWw\.
L1107 770277 RN EERRAAAAAAES
e v s S50
i \\\~_.\\\\ N N
[ Y A A A \\\\ ! RN R -~
PLLT AN =T o i s m T
_____,,/g\\\ ___,,1\\\\ \\\..___
VN N NS i’ Ly ~———" L BT
VN NSNS fd N L N
LN ettt A e _C o

Velocity field development, Ra = 10%,t = 0.2, 0.8, 1.2, 3.2, 6.4 and 40s

Fig. 3
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Comparison of velocity (Fig. 3) and temperature field (Fig. 4) shows evident
difference in formation and development of water transients whith those obtained
for air [4] in same range. Figure 4 gives the final steady state of both velocity and
temperature distributions. There are two separated circulation zones observed,
while in the middle a symmetry separation line developed.

Double-diffusion in closed cavity

On the same mesh as in previously case and similar boundary conditions exept
for vertical walls, where linear variation of temperature and molar fraction is
imposed

X=01T=1-Y C=1-Y

problem of double-diffusion was studied. The linear variation of molar fraction
can be interpreted as diffusion of the component through the wall. Fluid was con-
sidered for which body forces due to heat and mass transfer are opposed, Ra; =
5.510% (Gry = 2500, Pr = 2.2) and Ran, = —1.310° (Gry = —1000, Se = 130)
[2]. Figure 5,6,7 show development of velocity, temperature and molar fraction.
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<

L

W7

/




